Mol Brain
School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK.
Published: July 2013
Background: Down's syndrome (DS) is caused by triplication of all or part of human chromosome 21 and is characterized by a decrease in the overall size of the brain. One of the brain regions most affected is the cerebellum, in which the number of granule cells (GCs) is markedly decreased. GCs process sensory information entering the cerebellum via mossy fibres and pass it on to Purkinje cells and inhibitory interneurons. How GCs transform incoming signals depends on their input-output relationship, which is adjusted by tonically active GABA(A) receptor channels.
Results: We report that in the Ts65Dn mouse model of DS, in which cerebellar volume and GC number are decreased as in DS, the tonic GABA(A) receptor current in GCs is smaller than in wild-type mice and is less effective in moderating input resistance and raising the minimum current required for action potential firing. We also find that tonically active GABA(A) receptors curb the height and broaden the width of action potentials in wild-type GCs but not in Ts65Dn GCs. Single-cell real-time quantitative PCR reveals that these electrical differences are accompanied by decreased expression of the gene encoding the GABA(A) receptor β3 subunit but not genes coding for some of the other GABA(A) receptor subunits expressed in GCs (α1, α6, β2 and δ).
Conclusions: Weaker moderation of excitability and action potential waveform in GCs of the Ts65Dn mouse by tonically active GABA(A) receptors is likely to contribute to atypical transfer of information through the cerebellum. Similar changes may occur in DS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723448 | PMC |
http://dx.doi.org/10.1186/1756-6606-6-33 | DOI Listing |
Sci Signal
January 2025
Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.
View Article and Find Full Text PDFEpilepsia
January 2025
Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France.
Objective: Lennox-Gastaut syndrome (LGS) is typically characterized by drug-resistant epilepsy and subsequent cognitive deterioration. Surgery is a rare but viable option for the control of seizures in a subset of patients with LGS. This study aimed to describe the organization of the epileptogenic zone network (EZN) in patients with LGS using stereoelectroencephalography (SEEG) and to report the outcome of post-SEEG treatment.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.
Background: Epilepsy, a neurological disorder characterized by recurrent seizures, presents considerable difficulties in treatment, particularly when dealing with drug-resistant cases. Dapsone, recognized for its anti-inflammatory properties, holds promise as a potential therapeutic option. However, its effectiveness in epilepsy requires further investigation.
View Article and Find Full Text PDFThe Ca 3.2 isoform of T-type voltage-gated calcium channels plays a crucial role in regulating the excitability of nociceptive neurons; the endogenous molecules that modulate its activity, however, remain poorly understood. Here, we used serum proteomics and patch-clamp physiology to discover a novel peptide albumin (1-26) that facilitates channel gating by chelating trace metals that tonically inhibit Ca 3.
View Article and Find Full Text PDFTau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.