The carcinogenicity of benzene has been considered to be in part mediated by its chemically reactive metabolic product benzoquinone (BQ), which is formed from the intermediary metabolites phenol and hydroquinone (HQ). We have evaluated the DNA-binding capability of these chemicals in vitro and in vivo by postlabeling. Treatment of rat Zymbal glands in culture with phenol and HQ or direct reaction of BQ with DNA produced DNA adducts, which were detectable by the nuclease P1-enhanced 32P-postlabeling assay as 5'-32P-labeled 3',5'-bisphosphate products. The enhancement of sensitivity in this assay is based on the previous finding that nuclease P1 hydrolyzes the phosphate attached to the 3' side of normal nucleotides but not the corresponding phosphate of most aromatic/bulky adducted nucleotides. Also based on this hydrolytic property of nuclease P1, we developed an additional sensitive procedure that permitted the detection of DNA lesions as 5'-32P-labeled products of dinucleotides, pXpN, or of nucleoside monophosphates, pX, where X and N indicate an adducted nucleoside and a normal nucleoside respectively. In the latter assay, adducted DNA was first digested with nuclease P1 and acid phosphatase to yield XpN and N. The latter were then 32P-labeled to yield [5'-32P] pXpN or 32P-labeled and treated with venom phosphodiesterase to obtain [5'-32P]pX. After optimization of enzymatic conditions, the modified nuclease P1 assay yielded adduct recoveries similar to those obtained by the bisphosphate assay for in vitro phenol-, HQ- and BQ-DNA adducts. Neither of the nuclease P1-enhanced postlabeling procedures showed exposure-specific adducts in vivo in the bone marrow, Zymbal gland, liver and spleen of female Sprague-Dawley rats at 24 h after the last of four single, daily p.o. doses of 75 mg/kg phenol or 150 mg/kg phenol/HQ (1:1). Our results show that phenol, HQ and BQ produce adducts in vitro, but corresponding adducts are not detected in vivo with phenol and phenol/HQ, even when measured by the standard and modified nuclease P1 postlabeling methods capable of detecting 1 adduct in 10(9-10) DNA bases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/carcin/11.8.1349 | DOI Listing |
J Toxicol Environ Health A
December 2007
Texas A&M Health Science Center, School of Rural Public Health, College Station, Texas 77843-1266, USA.
Indoor combustion of solid fuel such as coal may generate respirable particles containing polycyclic aromatic hydrocarbons (PAH) that may adhere to settled dust. Dust might therefore present a major source of PAH exposure in humans. This study evaluated the in vitro and in vivo genotoxicity of PAH mixtures extracted from house dust samples.
View Article and Find Full Text PDFAquat Toxicol
August 2006
GRECAN, UPRES EA-1772, University of Caen, Caen, France.
The purpose of this study was to examine PAH accumulation and bulky DNA adduct formation in the digestive gland of zebra mussels exposed in their habitat or in controlled laboratory conditions to complex mixture of PAH. DNA adducts were measured using a 32P-postlabelling protocol with nuclease P1 enrichment adapted from Reddy and Randerath [Reddy, M.V.
View Article and Find Full Text PDFCarcinogenesis
June 2006
Department of Pharmacology, Toxicology & Neuroscience Louisiana State University-Health Sciences Center, Shreveport, LA, USA.
Naturally occurring coumarins (NOCs) are anti-carcinogenic in the mouse skin model. To characterize the chemopreventive potential of NOCs against breast cancer, we first examined their effects on 7,12-dimethylbenz[a]anthracene (DMBA)-DNA adduct formation in mouse mammary gland. We hypothesized that those NOCs that both inhibited cytochrome P450 1A1/1B1 and induced hepatic glutathione S-transferases (GSTs) would be the most effective in blocking DMBA-DNA adduct formation in mouse mammary gland.
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
May 2005
Institute of Biosciences and Technology, Texas Medical Center, Texas A and M University System, 2121 West Holcombe Boulevard, Houston, TX 77030-3303, USA.
I-compounds are bulky covalent DNA modifications that are derived from metabolic intermediates of nutrients. Some I-compounds may play protective roles against cancer, aging, and degenerative diseases. Many carcinogens and tumor promoters significantly reduce I-compound levels gradually during carcinogenesis.
View Article and Find Full Text PDFEnviron Mol Mutagen
June 2004
Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station, Texas 77843, USA.
Manufactured gas plant residue (MGP) is a complex mixture of polycyclic aromatic hydrocarbons (PAHs) that is tumorigenic in the lungs of mice. This study compared the relative genotoxicity of 7H-benzo[c]fluorene (BC), a PAH component of MGP, with MGP and MGP fractions in order to assess the contribution of BC to the genotoxicity of MGP. An MGP sample was separated into seven fractions (F1-F7) using silica gel column chromatography with petroleum ether (PE) followed by PE:acetone (99:1 v/v, then 98:2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!