Aim: Acute anoxic exposure rapidly increases prostaglandin E2 (PGE2 ) production and release in neonatal mice brains. We hypothesize that PGE2 is released in human cerebrospinal fluid (CSF) during perinatal asphyxia and that it might be used as a biomarker for perinatal asphyxia.
Methods: In full-term infants with lumbar puncture performed within 72 h of birth (n = 35), CSF was analysed for prostaglandin E2 metabolite (PGEM) using an enzyme immunoassay. Term infants with suspected but unverified infections were used as controls (n = 11). Hypoxic-ischaemic encephalopathy (HIE) was classified as mild, moderate or severe (HIE I-III). Neurological assessment of surviving patients was performed at 18 months of age.
Results: Prostaglandin E2 metabolite levels correlated to a low Apgar score at 5 min (p < 0.01) and 10 min (p < 0.01), a low pH (p < 0.001) and HIE score (p < 0.05). The HIE-III cases (n = 7) had significantly higher PGEM levels compared with both controls and the HIE-I group (n = 8). Irrespective of HIE grade, patients with adverse or fatal outcome had higher PGEM values compared with controls and asphyxiated infants with normal outcome (p < 0.05).
Conclusions: PGE2 is released during anoxic events in newborn infants, and PGEM may be useful as a biomarker for estimating degree of insult and predicting long-term outcome after perinatal asphyxia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/apa.12361 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!