Selective, potent blockade of the IRE1 and ATF6 pathways by 4-phenylbutyric acid analogues.

Br J Pharmacol

Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan.

Published: October 2013

Background And Purpose: 4-Phenylbutyric acid (4-PBA) is a chemical chaperone that eliminates the accumulation of unfolded proteins in the endoplasmic reticulum (ER). However, its chaperoning ability is often weak and unable to attenuate the unfolded protein response (UPR) in vitro or in vivo. To develop more potent chemical chaperones, we synthesized six analogues of 4-PBA and evaluated their pharmacological actions on the UPR.

Experimental Approach: NRK-52E cells were treated with ER stress inducers (tunicamycin or thapsigargin) in the presence of each of the 4-PBA analogues; the suppressive effects of these analogues on the UPR were assessed using selective indicators for individual UPR pathways.

Key Results: 2-POAA-OMe, 2-POAA-NO2 and 2-NOAA, but not others, suppressed the induction of ER stress markers GRP78 and CHOP. This suppressive effect was more potent than that of 4-PBA. Of the three major UPR branches, the IRE1 and ATF6 pathways were markedly blocked by these compounds, as indicated by suppression of XBP1 splicing, inhibition of UPRE and ERSE activation, and inhibition of JNK phosphorylation. Unexpectedly, however, these agents did not inhibit phosphorylation of PERK and eIF2α triggered by ER stress. These compounds dose-dependently inhibited the early activation of NF-κB in ER stress-exposed cells. 2-POAA-OMe and 2-POAA-NO2 also inhibited ER stress-induced phosphorylation of Akt.

Conclusion And Implications: The 4-PBA analogues 2-POAA-OMe, 2-POAA-NO2 and 2-NOAA strongly inhibited activation of the IRE1 and ATF6 pathways and downstream pathogenic targets, including NF-κB and Akt, in ER stress-exposed cells. These compounds may be useful for therapeutic intervention in ER stress-related pathological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799596PMC
http://dx.doi.org/10.1111/bph.12306DOI Listing

Publication Analysis

Top Keywords

ire1 atf6
12
atf6 pathways
12
2-poaa-ome 2-poaa-no2
12
4-phenylbutyric acid
8
4-pba analogues
8
2-poaa-no2 2-noaa
8
stress-exposed cells
8
analogues
5
4-pba
5
selective potent
4

Similar Publications

Morbillivirus Canis Infection Induces Activation of Three Branches of Unfolded Protein Response, MAPK and Apoptosis.

Viruses

November 2024

Laboratorio de Virología, Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP 1900, Buenos Aires, Argentina.

, commonly named Canine distemper virus (CDV), is a morbillivirus implicated in several signs in the family. In dogs (), common signs of infection include conjunctivitis, digital hyperkeratosis and neuropathologies. Even with vaccination, the canine distemper disease persists worldwide so the molecular pathways implicated in the infection processes have been an interesting and promising area in new therapeutic drugs research in recent years.

View Article and Find Full Text PDF

This study aimed to investigate the molecular mechanisms of reactive oxygen species (ROS)-induced endoplasmic reticulum stress (ERS) in apoptosis and meat tenderization during postmortem aging. Yak longissimus dorsi muscle was incubated with N-acetylcysteine (NAC), 4-phenylbutyric acid (4-PBA) and NAC + 4-PBA, respectively, and stored at 4 °C for 0 h, 12 h, 24 h, 72 h, 120 h and 168 h. The results showed that NAC and 4-PBA treatments significantly reduced ROS content and endoplasmic reticulum stress levels.

View Article and Find Full Text PDF

Methamphetamine and HIV-1 Tat Protein Synergistically Induce Endoplasmic Reticulum Stress to Promote TRIM13-Mediated Neuronal Autophagy.

Mol Neurobiol

December 2024

NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China.

Co-exposure to methamphetamine (METH) abuse and HIV infection exacerbates central nervous system damage. However, the underlying mechanisms of this process remain poorly understood. This study aims to explore the roles of neuronal autophagy in the synergistic damage to the central nervous system caused by METH and HIV proteins.

View Article and Find Full Text PDF

Role of MFN2 in bovine embryonic development and the mitigation of ER stress.

Anim Reprod Sci

December 2024

Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China. Electronic address:

This study investigated the role of mitochondrial fusion protein-2 (MFN2) in bovine embryonic development and its relationship with endoplasmic reticulum (ER) stress, aiming to increase the efficiency of in vitro embryo culture. Western blot analysis revealed that MFN2 expression peaked at the 2-cell stage, decreased at the 4-cell stage, and gradually increased from the 6-8-cell stage to the blastocyst stage. Inhibiting MFN2 at the zygote stage reduced blastocyst formation and proliferation, and this damage was partially reversed by the ER stress protective agent TUDCA.

View Article and Find Full Text PDF

Targeted regulation of cellular proteostasis machinery represents a promising strategy for the attenuation of pathological protein aggregation. Recent work suggests that the unfolded protein response in the endoplasmic reticulum (UPR ) directly regulates the aggregation and toxicity of expanded polyglutamine (polyQ) proteins. However, the mechanisms underlying this phenomenon remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!