A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phaeolschidins A-E, five hispidin derivatives with antioxidant activity from the fruiting body of Phaeolus schweinitzii collected in the Tibetan Plateau. | LitMetric

Phaeolschidins A-E, five hispidin derivatives with antioxidant activity from the fruiting body of Phaeolus schweinitzii collected in the Tibetan Plateau.

J Nat Prod

State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , No. 9 Beiertiao, Zhongguancun, Haidian District, Beijing 100190, People's Republic of China.

Published: August 2013

Five new hispidin derivatives, phaeolschidins A-E (1-5), as well as two known natural products, pinillidine (6) and hispidin (7), were isolated from the fruiting bodies of Phaeolus schweinitzii collected in the Tibetan Plateau. The structures of the new compounds were elucidated by spectroscopic methods. Phaeolschidins A-D (1-4) are new bishispidins. Phaeolschidin E (5) is a new class of hispidin derivative in which one pyrrolidin-2-one moiety was linked to C-3 of hispidin. The antioxidant activity of 1-7 was evaluated using three methods: the DPPH scavenging assay, the total antioxidant capacity assay, and the lipid peroxidation assay. Hispidin showed the strongest antioxidant activity of all tested compounds. This is the first report of secondary metabolites from the fungus P. schweinitzii.

Download full-text PDF

Source
http://dx.doi.org/10.1021/np400234uDOI Listing

Publication Analysis

Top Keywords

antioxidant activity
12
phaeolschidins a-e
8
hispidin derivatives
8
phaeolus schweinitzii
8
schweinitzii collected
8
collected tibetan
8
tibetan plateau
8
hispidin
6
a-e hispidin
4
antioxidant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!