Mathematical modeling is an essential tool for the comprehensive understanding of cell metabolism and its interactions with the environmental and process conditions. Recent developments in the construction and analysis of stoichiometric models made it possible to define limits on steady-state metabolic behavior using flux balance analysis. However, detailed information on enzyme kinetics and enzyme regulation is needed to formulate kinetic models that can accurately capture the dynamic metabolic responses. The use of mechanistic enzyme kinetics is a difficult task due to uncertainty in the kinetic properties of enzymes. Therefore, the majority of recent works considered only mass action kinetics for reactions in metabolic networks. Herein, we applied the optimization and risk analysis of complex living entities (ORACLE) framework and constructed a large-scale mechanistic kinetic model of optimally grown Escherichia coli. We investigated the complex interplay between stoichiometry, thermodynamics, and kinetics in determining the flexibility and capabilities of metabolism. Our results indicate that enzyme saturation is a necessary consideration in modeling metabolic networks and it extends the feasible ranges of metabolic fluxes and metabolite concentrations. Our results further suggest that enzymes in metabolic networks have evolved to function at different saturation states to ensure greater flexibility and robustness of cellular metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.201300091 | DOI Listing |
Metabolomics
January 2025
Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada.
The perennially ice-covered Lake Bonney in Antarctica has been deemed a natural laboratory for studying life at the extreme. Photosynthetic algae dominate the lake food webs and are adapted to a multitude of extreme conditions including perpetual shading even at the height of the austral summer. Here we examine how the unique light environment in Lake Bonney influences the physiology of two Chlamydomonas species.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Radiology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China.
Introduction: The intricate interplay between organs can give rise to a multitude of physiological conditions. Disruptions such as inflammation or tissue damage can precipitate the development of chronic diseases such as tumors or diabetes mellitus (DM). While both lung cancer and DM are the consequences of disruptions in homeostasis, the relationship between them is intricate.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat, 382426, India.
Catharanthus roseus is a medicinal plant widely known for producing monoterpenoid indole alkaloids (MIAs), including therapeutic compounds such as vinblastine and vincristine, which are crucial for cancer treatment. However, the naturally low concentration of these alkaloids in plant tissues poses a significant challenge for large-scale production. This study explores the application of siderophore-producing bacteria for seed bacterization of Catharanthus roseus to enhance the production of MIAs, including vindoline, catharanthine, and vinblastine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!