Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A facile one-pot solvent-thermal method was developed to synthesize a unique 3D microflower structure assembled from single- or double-layered 2D nanosheets of V4O9 (F-VO). Simply by controlling the precursor concentration, yolk-shelled V4O9 (YS-VO) or bulk V4O9 (B-VO) can be produced instead. The precursor-concentration dependent growth mechanism is proposed. The exceptional catalytic/electrochemical properties and large specific surface area of F-VO promise a wide range of applications. As a proof-of-concept demonstration, we investigate its use in high-performance supercapacitors (~392 F g(-1)), and for sensitive detection of H2O2 (with a low detection limit of ~0.1 μM) and methanol (with a low detection limit of ~60 μM). Furthermore, we show that F-VO greatly outperforms its counterparts (YS-VO and B-VO) presumably owing to its unique structure and crystal plane orientation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3nr02651e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!