Designed ankyrin repeat proteins (DARPins) are well-established binding molecules based on a highly stable nonantibody scaffold. Building on 13 crystal structures of DARPin-target complexes and stability measurements of DARPin mutants, we have generated a new DARPin library containing an extended randomized surface. To counteract the enrichment of unspecific hydrophobic binders during selections against difficult targets containing hydrophobic surfaces such as membrane proteins, the frequency of apolar residues at diversified positions was drastically reduced and substituted by an increased number of tyrosines. Ribosome display selections against two human caspases and membrane transporter AcrB yielded highly enriched pools of unique and strong DARPin binders which were mainly monomeric. We noted a prominent enrichment of tryptophan residues during binder selections. A crystal structure of a representative of this library in complex with caspase-7 visualizes the key roles of both tryptophans and tyrosines in providing target contacts. These aromatic and polar side chains thus substitute the apolar residues valine, leucine, isoleucine, methionine, and phenylalanine of the original DARPins. Our work describes biophysical and structural analyses required to extend existing binder scaffolds and simplifies an existing protocol for the assembly of highly diverse synthetic binder libraries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776336PMC
http://dx.doi.org/10.1002/pro.2312DOI Listing

Publication Analysis

Top Keywords

apolar residues
8
design construction
4
construction characterization
4
characterization second-generation
4
second-generation darp
4
darp library
4
library reduced
4
reduced hydrophobicity
4
hydrophobicity designed
4
designed ankyrin
4

Similar Publications

Protein-RNA interactions play a critical role in many cellular processes and pathologies. However, experimental determination of protein-RNA structures is still challenging, therefore computational tools are needed for the prediction of protein-RNA interfaces. Although evolutionary pressures can be exploited for structural prediction of protein-protein interfaces, and recent deep learning methods using protein multiple sequence alignments have radically improved the performance of protein-protein interface structural prediction, protein-RNA structural prediction is lagging behind, due to the scarcity of structural data and the flexibility involved in these complexes.

View Article and Find Full Text PDF

Nanoemulsions (NEs) possess properties that enhance the solubility, bioavailability and therapeutic efficacy of drugs. Chalcones are compounds known for their antifungal properties. In this study, we evaluated different emulsification techniques to create alginate nanoemulsions containing chalcone (1E,4E)-1,5-bis (4-methoxyphenyl) penta-1,4-dien-3-one (DB4OCH).

View Article and Find Full Text PDF

The use of organic solvents, particularly those of a non-polar nature, is a common practice during cleaning operations in the restoration of polychrome artworks and metallic artifacts. However, these solvents pose significant risks to the health of operators and the environment. This study explores the formulation of innovative gels based on non-polar solvents and cellulose derivatives, proposing a safe and effective method for cleaning metallic artworks.

View Article and Find Full Text PDF

Wetting of a Dynamically Patterned Surface Is a Time-Dependent Matter.

J Phys Chem B

December 2024

Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France.

In nature and many technological applications, aqueous solutions are in contact with patterned surfaces, which are dynamic over time scales spanning from ps to μs. For instance, in biology, exposed polar and apolar residues of biomolecules form a pattern, which fluctuates in time due to side chain and conformational motions. At metal/and oxide/water interfaces, the pattern is formed by surface topmost atoms, and fluctuations are due to, e.

View Article and Find Full Text PDF
Article Synopsis
  • X-ray crystallography is crucial for identifying atomic positions in protein crystals, but it raises concerns about whether these structures accurately reflect proteins' functional forms in solution due to environmental differences.
  • The study investigates the effect of crystallization on proton affinities by comparing pH measurements through constant pH molecular dynamics simulations for proteins in both crystal and solution environments.
  • Results indicate that pH changes mainly occur at crystal interfaces, with the need for improved techniques in molecular dynamics simulations to better understand protein function post-crystallization.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!