The relationship between trifluoroethanol (TFE) enhancement of peptide alpha-helicity and protein secondary structure has been studied for a series of 11 peptides which span the complete primary sequence of bovine growth hormone (bGH). Ten of these peptides become increasingly alpha-helical as the solution concentration of TFE is increased. The amount of alpha-helicity developed by these peptides plateaus above 10 mol % TFE and ranges from 0 to 71%. The increased alpha-helicity, as determined by CD, closely correlates with the amount of alpha-helix predicted for eight of the eleven peptides analyzed (r = 0.9). Therefore, for this group of peptides, it appears that this technique can be used as a measure of alpha-helical propensity. Inclusion of the remaining three peptides in this analysis significantly lowers the correlation (r = 0.6). The reduced correspondence between TFE-enhanced and predicted alpha-helicity in this latter subset of peptides may be due to their relatively high hydrophobicity. In addition, the relevance of TFE-enhanced peptide alpha-helicity and the secondary structure of the corresponding protein regions was explored. Although the three peptides which form the largest amount of alpha-helicity in the presence of 10 mol % TFE correspond to alpha-helical regions of the protein, the overall correlation is significantly lower than is observed for the TFE-enhanced and predicted alpha-helicity. These findings suggest that the propensity of specific amino acid sequences for alpha-helix formation influences the amount of alpha-helicity which forms in corresponding protein sequences, but that other factors can modify this structure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00475a025DOI Listing

Publication Analysis

Top Keywords

peptide alpha-helicity
12
predicted alpha-helicity
12
secondary structure
12
amount alpha-helicity
12
alpha-helicity
9
alpha-helicity secondary
8
structure corresponding
8
bovine growth
8
growth hormone
8
peptides
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!