In Parkinson's disease (PD) patients, alpha-synuclein (α-syn) pathology advances in form of Lewy bodies and Lewy neurites throughout the brain. Clinically, PD is defined by motor symptoms that are predominantly attributed to the dopaminergic cell loss in the substantia nigra. However, motor deficits are frequently preceded by smell deficiency or neuropsychological symptoms, including increased anxiety and cognitive dysfunction. Accumulating evidence indicates that aggregation of α-syn impairs synaptic function and neurogenic capacity that may be associated with deficits in memory, learning and mood. Whether and how α-syn accumulation contributes to neuropathological events defining these earliest signs of PD is presently poorly understood. We used a tetracycline-suppressive (tet-off) transgenic mouse model that restricts overexpression of human A30P α-syn to neurons owing to usage of the neuron-specific CaMKIIα promoter. Abnormal accumulation of A30P correlated with a decreased survival of newly generated neurons in the hippocampus and olfactory bulb. Furthermore, when A30P α-syn expression was suppressed, we observed reduction of the human protein in neuronal soma. However, residual dox resistant A30P α-syn was detected in glial cells within the hippocampal neurogenic niche, concomitant with the failure to fully restore hippocampal neurogenesis. This finding is indicative to a potential spread of pathology from neuron to glia. In addition, mice expressing A30P α-syn show increased anxiety-related behavior that was reversed after dox treatment. This implies that glial A30P α-synucleinopathy within the dentate gyrus is part of a process leading to impaired hippocampal neuroplasticity, which is, however, not a sole critical event for circuits implicated in anxiety-related behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4324756 | PMC |
http://dx.doi.org/10.1016/j.nbd.2013.07.004 | DOI Listing |
iScience
December 2024
Department of Biomedical and Clinical Sciences, Department of Clinical Pathology, Linköping University, Linköping, Sweden.
Accumulating evidence demonstrates that alpha-synuclein (α-syn) pathology associated with Parkinson's disease (PD) is not limited to the brain, as it also appears in a select number of peripheral tissues including the liver. In this study, we identified a number of PD-associated α-syn post-translational modifications in the livers of (Thy-1)-h[A30P] mice, a mouse model of familial PD expressing human α-syn harboring the A30P mutation driven by a neuron-specific promoter. , we also demonstrate that human hepatocytes induce post-translational modifications following α-syn fibrillar (PFF) treatment.
View Article and Find Full Text PDFJ Chem Phys
October 2024
Department of Chemistry, University of Delhi, Delhi 110007, India.
The behavior of hydration water around familial Parkinson's disease linked mutants of α-synuclein may be linked to the early-onset of Parkinson's disease. For the first time, this study compares the local structure and dynamics of hydration water around different segments of some of the natural mutants of α-synuclein, i.e.
View Article and Find Full Text PDFJ Drug Target
October 2024
Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India.
Int J Mol Sci
August 2024
Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature.
View Article and Find Full Text PDFFront Dement
June 2024
Biosciences Institute and Centre for Transformative Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
Introduction: Neuronal hyperexcitability and neuroinflammation are thought to occur at early stages in a range of neurodegenerative diseases. Neuroinflammation, notably activation of microglia, has been identified as a potential prodromal marker of dementia with Lewy bodies (DLB). Using a transgenic mouse model of DLB that over-expresses human mutant (A30P) alpha-synuclein (hα-syn) we have investigated whether early neuroinflammation is evident in the hippocampus in young pre-symptomatic animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!