A synonymous change, p.Gly16Gly in MECP2 Exon 1, causes a cryptic splice event in a Rett syndrome patient.

Orphanet J Rare Dis

Molecular Neuropsychiatry & Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, Canada.

Published: July 2013

Background: Mutations in MECP2 are the main cause of Rett Syndrome. To date, no pathogenic synonymous MECP2 mutation has yet been identified. Here, we investigated a de novo synonymous variant c.48C>T (p.Gly16Gly) identified in a girl presenting with a typical RTT phenotype.

Methods: In silico analyses to predict the effects of sequence variation on mRNA splicing were employed, followed by sequencing and quantification of lymphocyte mRNAs from the subject for splice variants MECP2_E1 and MECP2_E2.

Results: Analysis of mRNA confirmed predictions that this synonymous mutation activates a splice-donor site at an early position in exon 1, leading to a deletion (r.[=, 48_63del]), codon frameshift and premature stop codon (p.Glu17Lysfs*16) for MECP2_E1. For MECP2_E2, the same premature splice site is used, but as this is located in the 5'untranslated region, no effect on the amino acid sequence is predicted. Quantitative analysis that specifically measured this cryptic splice variant also revealed a significant decrease in the quantity of the correct MECP2_E1 transcript, which indicates that this is the etiologically significant mutation in this patient.

Conclusion: These findings suggest that synonymous variants of MECP2 as well as other known disease genes-and de novo variants in particular- should be re-evaluated for potential effects on splicing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729535PMC
http://dx.doi.org/10.1186/1750-1172-8-108DOI Listing

Publication Analysis

Top Keywords

cryptic splice
8
rett syndrome
8
synonymous
5
synonymous change
4
change pgly16gly
4
mecp2
4
pgly16gly mecp2
4
mecp2 exon
4
exon cryptic
4
splice
4

Similar Publications

The human heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is a prototypical RNA-binding protein essential in regulating a wide range of post-transcriptional events in cells. As a multifunctional protein with a key role in RNA metabolism, deregulation of its functions has been linked to neurodegenerative diseases, tumour aggressiveness and chemoresistance, which has fuelled efforts to develop novel therapeutics that modulates its RNA binding activities. Here, using a combination of Molecular Dynamics (MD) simulations and graph neural network pockets predictions, we showed that hnRNPA1 N-terminal RNA binding domain (UP1) contains several cryptic pockets capable of binding small molecules.

View Article and Find Full Text PDF

Background: Mutations in the ABO gene, including base insertions, deletions, substitutions, and splicing errors, can result in blood group subgroups associated with the quantity and quality of blood group antigens. Here, we employed third-generation PacBio sequencing to uncover a novel allele arising from an intron splice site mutation, which altered the expected A phenotype to manifest as an Ael phenotype. The study aimed to characterize the molecular mechanism underlying this phenotypic switch.

View Article and Find Full Text PDF

Introduction: Advancements in sequencing technologies have significantly improved clinical genetic testing, yet the diagnostic yield remains around 30-40%. Emerging sequencing technologies are now being deployed in the clinical setting to address the remaining diagnostic gap.

Methods: We tested whether short-read genome sequencing could increase diagnostic yield in individuals enrolled into the UCI-GREGoR research study, who had suspected Mendelian conditions and prior inconclusive clinical genetic testing.

View Article and Find Full Text PDF

Objective: Inclusion body myositis (IBM) is an idiopathic inflammatory myopathy with muscle pathology characterized by endomysial inflammation, rimmed vacuoles, and cytoplasmic mislocalization of transactive response DNA-binding protein 43 (TDP-43). We aimed to determine whether loss of TDP-43 splicing repression led to the production of "cryptic peptides" that could be detected in muscle biopsies as a useful biomarker for IBM.

Methods: We used an antisera against a neoepitope encoded by a TDP-43-dependent cryptic exon within hepatoma-derived growth factor-like protein 2 (HDGFL2) for immunohistochemical analysis on muscle biopsy samples of 122 patients with IBM, 181 disease controls, and 16 healthy controls without abnormal muscle pathology.

View Article and Find Full Text PDF

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurodegenerative disorder characterized by spastic paraplegia, parkinsonism and psychiatric and/or behavioral symptoms caused by variants in gene encoding chromosome-19 open reading frame-12 (C19orf12). We present here seven patients from six unrelated families with detailed clinical, radiological, and genetic investigations. Childhood-onset patients predominantly had a spastic ataxic phenotype with optic atrophy, while adult-onset patients were presented with cognitive, behavioral, and parkinsonian symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!