Exploring methods to prioritise concentration ratios when estimating weighted absorbed dose rates to terrestrial Reference Animals and Plants.

J Environ Radioact

NERC Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster LA1 4AP, United Kingdom. Electronic address:

Published: December 2013

The ICRP and IAEA have recently reported Concentration Ratio values (CRwo-media--equilibrium radionuclide activity concentration in whole organism divided by that in media) for Reference Animals and Plants (RAPs) and a wide range of organism groups, respectively, based on a common online database. Given the large number of data gaps in both publications, there is a need to develop methods for identifying the relative importance of improving currently available CR(wo-media) values. A simple, transparent approach involving the derivation and comparison of predicted internal and external weighted absorbed dose rates for radionuclides considered by ICRP (2009) for terrestrial RAPs is presented. Using the approach of applying a reference value of CR(wo-soil) = 1 or using the maximum reported values where CR(wo-soil) >1, we provisionally identify terrestrial radionuclide RAP combinations which could be considered low priority, notably: Ca, Cr and Ni consistently; Mn for all RAPs except Deer and Pine Tree; and Tc for all RAPs but Wild Grass. Equally, we can systematically identify high priority elements and radioisotopes, which largely, but not exclusively, consist of alpha-emitters (especially isotopes of Ra and Th, but also consistently Am, Cf, Cm, Np, Pa, Po, Pu, U). The analysis highlights the importance of the radiation weighting factor default assumption of 10 for alpha-emitters in the ERICA Tool when comparing the magnitude of the internal dose and trying to identify high priority RAP-isotope combinations. If the unweighted Dose Conversion Coefficient (DCC) values are considered, those for alpha-emitters are often one order of magnitude higher than those due to some beta-gamma emitters for terrestrial RAPs, whereas with the radiation weighting factor applied they are two orders of magnitude higher.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2013.05.005DOI Listing

Publication Analysis

Top Keywords

weighted absorbed
8
absorbed dose
8
dose rates
8
reference animals
8
animals plants
8
terrestrial raps
8
identify high
8
high priority
8
radiation weighting
8
weighting factor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!