The molecular dynamics in the crystal and the thermodynamic functions of the β-polymorph of glycine have been determined from a combination of molecular translation-libration frequencies reflecting the temperature dependence of atomic displacement parameters (ADPs), with frequencies derived from ONIOM(DFT:PM3) calculations on a 15-molecule β-glycine cluster. ADPs have been obtained from variable-temperature diffraction data to 0.5 Å resolution collected with X-ray synchrotron (10-300 K) and sealed tube radiation (50-298 K). At the higher temperatures, the ADPs of β-glycine from synchrotron are larger than those from sealed tube probably due to different experimental conditions. The lattice vibration frequencies from normal-mode analysis of ADPs and the internal vibration frequencies from ONIOM(B3LYP/6-311+G(2d,p):PM3) calculations agree with those from spectroscopy. Estimation of thermodynamic functions using the vibrational frequencies, the Einstein and Debye models of heat capacity, and the room-temperature compressibility provides C(p), H(vib), and S(vib) that agree with those from calorimetry. The β-phase with higher H and G is found to be less stable than the α-phase in the temperature range of the experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp404408hDOI Listing

Publication Analysis

Top Keywords

atomic displacement
8
displacement parameters
8
thermodynamic functions
8
sealed tube
8
vibration frequencies
8
frequencies
5
dynamics thermodynamics
4
thermodynamics crystalline
4
crystalline polymorphs
4
polymorphs β-glycine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!