Objective: The aim of the study was to provide data on the fracture strength of monolithic high translucent Y-TZP crowns and porcelain-veneered high translucent Y-TZP crown cores and to compare that data with the fracture strength of porcelain-veneered Y-TZP crown cores and monolithic lithium disilicate glass-ceramic crowns.
Materials And Methods: Sixty standardized crowns divided into six groups (n = 10) were fabricated: monolithic high translucent Y-TZP crowns, brand A, monolithic high translucent Y-TZP crowns, brand B, veneered high translucent Y-TZP crown cores, brand A, veneered high translucent Y-TZP crown cores, brand B, heat-pressed monolithic lithium disilicate crowns and veneered Y-TZP crown cores. All crowns were thermocycled, cemented onto dies, cyclically pre-loaded and finally loaded to fracture.
Results: The monolithic Y-TZP groups showed significantly higher fracture strength (2795 N and 3038 N) compared to all other groups. The fracture strength in the veneered Y-TZP group (2229 N) was significantly higher than the monolithic lithium disilicate group (1856 N) and the veneered high translucent Y-TZP groups (1480 N and 1808 N).
Conclusions: The fracture strength of monolithic high translucent Y-TZP crowns is considerably higher than that of porcelain-veneered Y-TZP crown cores, porcelain-veneered high translucent Y-TZP crown cores and monolithic lithium disilicate crowns. The fracture strength of a crown made of monolithic high translucent Y-TZP is, with a large safety margin, sufficient for clinical use for the majority of patients. Porcelain-veneered Y-TZP crown cores show higher fracture resistance than monolithic lithium disilicate crowns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/00016357.2013.822098 | DOI Listing |
Nat Commun
January 2025
Department of Physics, Research Centre of Excellence for Organic Electronics and Institute of Advanced Materials, Hong Kong Baptist University, Hong Kong, China.
The artistic and scientific perspectives of the translucent color organic solar cells (OSCs), made with the emerging narrowband nonfullerene acceptors are explored. The translucent color OSCs, comprising a Fabry-Pérot microcavity optical coupling layer, have a power conversion efficiency of >15% and a maximum transparency of >20% for the three primary colors. The performance-color relationship of the translucent color OSCs is analyzed using a combination of high-throughput optical computing and experimental optimization, allowing light with desired color to pass through, while absorbing enough light to generate electricity.
View Article and Find Full Text PDFJ Morphol
January 2025
Department of Biology, Gonzaga University, Spokane, Washington, USA.
For over a century researchers have marveled at the square-shaped toe tips of several species of climbing salamanders (genus Aneides), speculating about the function of large blood sinuses therein. Wandering salamanders (Aneides vagrans) have been reported to exhibit exquisite locomotor control while climbing, jumping, and gliding high (88 m) within the redwood canopy; however, a detailed investigation of their digital vascular system has yet to be conducted. Here, we describe the vascular and osteological structure of, and blood circulation through, the distal regions of the toes of A.
View Article and Find Full Text PDFMorphologie
January 2025
Department of Biostatistics, KS Hegde Medical Academy, Nitte (deemed to be university), Mangalore, Karnataka, India.
Introduction: In the forensic field, having accurate understanding of the macroscopic and microscopic alterations that occur in teeth when exposed to temperatures has remarkable significance. The preservation of delicate incinerated teeth is crucial in fire investigations that pertain to the temperature exposed, as well as the identification of victims. This preservation is necessary in order to conduct macroscopic and microscopic ultra-structural examinations, which provide valuable insights into the structural alterations that dental tissues undergo when exposed to low to high temperatures.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Periodontics Dentistry and Community Dentistry, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia.
(1) Background: Alkasite is a novel restorative material that has attracted interest in recent years because of its distinctive characteristics, including its high translucency and excellent biocompatibility. It is comparable to glass ionomer cement (GIC) and resin-modified glass ionomer cement (RMGIC) due to its fluoride-release ability and usage in esthetically concerned areas. This study aimed to assess the shear bond strength (SBS) of Alkasite restorative material in comparison with GIC and RMGIC (2) Methods: The study sample included 120 extracted sound primary molars and was randomly split into three groups, including group 1: RMGIC; group 2: Alkasite; and group 3: GIC.
View Article and Find Full Text PDFJ Prosthodont Res
January 2025
Department of Gerodontology and Oral Rehabilitation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
Purpose: This study investigated the effects of femtosecond laser (FL) irradiation on the surface roughness and shear bond strength of high-translucency zirconia (6 mol% yttria-partially stabilized zirconia [6Y-PSZ]) and lithium disilicate (LiSiO) glass ceramics.
Methods: Fully sintered square-shaped specimens of 6Y-PSZ (7 groups; 20 specimens/group) and LiSiO (8 groups; 20 specimens/group) were surface-treated via sandblasting (50-μm alumina sand or glass beads) or FL irradiation (20- or 40-μm dot or cross-line patterns) or using Monobond Etch & Prime (Ivoclar Vivadent AG; only for LiSiO specimens). The surface roughness (arithmetic average [Sa] and developed interfacial area ratio [Sdr]) and shear bond strength after 24 h and 10,000 thermal cycles were measured and statistically analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!