Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A multi-responsive sensor 1 was constructed by combining a ferrocene unit and a rhodamine block via a carbohydrazone bond. The sensor showed high selectivity toward Cu(2+) over other common metal ions in a wide pH range with excellent reversibility and rapid response. The obvious color change from colorless to pink upon the addition of Cu(2+) could make it a suitable 'naked-eye' indicator for Cu(2+). The detection limit (LOD) obtained was down to 2.0 nM and the association constant (Ka) was evaluated as 4.65 × 10(7) M(-1). The accuracy for detecting Cu(2+) in environmental river water was compared favorably with the traditional atomic absorption spectroscopy method (AAS). Finally, we proposed a reversible ring-opening mechanism (Off-On) of the rhodamine spirolactam induced by Cu(2+) binding and a 2 : 1 stoichiometric structure between 1 and Cu(2+).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3an00741c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!