Src Family Kinase Inhibitor PP2 Has Different Effects on All-Trans-Retinoic Acid or Arsenic Trioxide-Induced Differentiation of an Acute Promyelocytic Leukemia Cell Line.

Cancer Res Treat

Division of Hematology-Oncology, Department of Internal Medicine, Institute for Clinical Molecular Biology Research, Soonchunhang University Hospital, Soonchunhang University College of Medicine, Seoul, Korea.

Published: June 2013

Purpose: Leukemic promyelocytes have the unique ability to undergo differentiation after exposure to retinoic acid and both differentiation and apoptosis after exposure to arsenic trioxide (ATO). Recent studies have shown that inhibition of Src family kinases (SFKs) resulted in enhancement of retinoic acid-induced myeloid differentiation.

Materials And Methods: In this study, we investigated the question of whether the SFK inhibitor PP2 enhanced the differentiation of NB4 cells when combined with ATO as well as when combined with all-trans-retinoic acid (ATRA). In addition, we attempted to determine the difference in retinoic acid-induced gene expression between cells treated with PP2 in combination with ATRA and in combination with ATO.

Results: SFK inhibitor PP2 induced significant enhancement of ATRA- or ATO-induced differentiation of NB4 cells. A significantly stronger synergistic effect was observed when PP2 was combined with ATRA than when combined with ATO. Flow cytometric analysis demonstrated a significant increase in CD11b-positive granulocytes up to 60.73% and 31.58%, respectively. These results were confirmed by nitroblue tetrazolium staining. These effects were not related to apoptosis. Results of Annexin-V-fluorescein staining revealed that PP2 combined with ATRA or PP2 combined with ATO did not induce apoptosis in NB4 cells. Retinoic acid-induced gene expression was different in both groups. Intercellular adhesion molecule-1 expression showed a significant increase in cells treated with PP2 in combination with ATRA, whereas cathepsin D expression showed a significant increase in cells treated with PP2 in combination with ATO.

Conclusion: Our data showed that SFK inhibitor PP2 enhanced acute promyelocytic leukemia cell differentiation when combined with either ATRA or ATO with difference in activation of retinoic acid-induced genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710962PMC
http://dx.doi.org/10.4143/crt.2013.45.2.126DOI Listing

Publication Analysis

Top Keywords

inhibitor pp2
16
retinoic acid-induced
16
sfk inhibitor
12
nb4 cells
12
combined ato
12
cells treated
12
treated pp2
12
pp2 combination
12
pp2 combined
12
combined atra
12

Similar Publications

Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways.

View Article and Find Full Text PDF
Article Synopsis
  • N-methyl-D-aspartate receptors (NMDAR) and pannexin 1 (Panx1) channels play key roles in the development and maintenance of chronic neuropathic pain.
  • In a study with male rats, it was found that activation of NMDARs led to increased expression of certain proteins (pSrc and pPanx1), worsening pain responses in nerve-injured animals.
  • Blocking Panx1 or inhibiting Src effectively reduced pain responses, suggesting that targeting the NMDAR-Panx1 communication pathway could be a potential strategy for treating chronic pain.
View Article and Find Full Text PDF

Estrogen receptor activates SRC and ERK1/2 and promotes tumorigenesis in human testicular embryonic carcinoma cells NT2/D1.

Exp Cell Res

October 2024

Laboratory of Experimental Endocrinology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil. Electronic address:

Testicular germ cell tumors have the highest incidence in young men (between 15 and 44 years of age) and its etiology is still unclear, but its emergence on puberty suggests a hormone-dependent mechanism for the development of these tumors and their progression. We previously identified the estrogen receptor ESR1, ESR2, GPER and an isoform of ESR1, the ESR1-36 in human testicular embryonic carcinoma NT2/D1 cells, and the activation of SRC induced by ESR1 and ESR2 in these cells. Therefore, this study aimed to analyze the role of ER in the activation of ERK1/2, and the involvement of SRC and ERK1/2 on proliferation, migration, and invasion of the NT2/D1 cells.

View Article and Find Full Text PDF

Fibroblast growth factor (FGF) is involved in the progression of glioma, a most common type of brain tumor, and breast tumors. In this study, we aim to evaluate the effects of the inhibitor PP2 on cell proliferation and migration in glioma and breast tumor cells, and to characterize the molecular mechanisms involved in these processes. The inhibitory effect of PP2 on the tumorigenic potential of C6 glioma and MDA-MB-231 cells was examined by proliferation, migration, and invasion assays, and apoptotic analysis.

View Article and Find Full Text PDF

Mesenchymal stromal/stem cells (MSC) play a crucial role in promoting neovascularization, which is essential for wound healing. They are commonly utilized as an autologous source of progenitor cells in various stem cell-based therapies. However, incomplete MSC differentiation towards a vascular endothelial cell phenotype questions their involvement in an alternative process to angiogenesis, namely vasculogenic mimicry (VM), and the signal transducing events that regulate their in vitro priming into capillary-like structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!