Aim: To investigate the effects of rhein on intestinal epithelial tight junction proteins in rats with IgA nephropathy (IgAN).

Methods: Twenty-eight female Sprague-Dawley rats were randomly divided into four groups (7 per group): Control, IgAN, Rhein-treated, and Rhein-prevented. Bovine serum albumin, lipopolysaccharide and CCl4 were used to establish the rat model of IgA nephropathy. The Rhein-treated group was given rhein from week 7 until the rats were sacrificed. The Rhein-prevented group was given rhein from week 1. Animals were sacrificed at the end of week 10. We observed the changes in the intestinal epithelial tight junctions using transmission electron microscopy, and expression of intestinal epithelial tight junction proteins zona occludens protein (ZO)-1 and occludin by immunofluorescence using laser confocal microscopy. Changes in mRNA and protein expression of ZO-1 and occludin were measured by reverse transcriptase polymerase chain reaction and Western blotting. The ratio of urinary lactulose/mannitol was measured by high performance liquid chromatography (HPLC) for assessing the intestinal permeability.

Results: In the control group, the tight junctions lied between epithelial cells on the top of the outer side of the cell membrane, and appeared in dense dotted crystal structures, the neighboring cells were binded tightly with no significant gap, and the tight junction protein ZO-1 and occludin were evenly distributed in the intestinal epithelial cells at the top of the junction. Compared with the control group, in the IgAN group, the structure of the tight junction became obscured and the dotted crystal structures had disappeared; the fluorescence of ZO-1 and occludin was uneven and weaker (5.37 ± 1.27 vs 10.03 ± 1.96, P < 0.01; 4.23 ± 0.85 vs 12.35 ± 4.17, P < 0.01); the mRNA expression of ZO-1 and occludin decreased (0.42 ± 0.19 vs 0.92 ± 0.24, P < 0.01; 0.40 ± 0.15 vs 0.97 ± 0.25, P < 0.01); protein expression of ZO-1 and occludin was decreased (0.85 ± 0.12 vs 1.98 ± 0.43, P < 0.01; 0.72 ± 0.15 vs 1.38 ± 0.31, P < 0.01); and the ratio of urinary lactulose/mannitol increased (3.55 ± 0.68 vs 2.72 ± 0.21, P < 0.01). In the Rhein-prevented and Rhein-treated groups, compared with the IgAN group, the intestinal epithelial tight junctions were repaired; fluorescence of ZO-1 and occludin was stronger (11.16 ± 3.52 and 8.81 ± 2.30 vs 5.37 ± 1.27, P < 0.01; 10.97 ± 3.40 and 9.46 ± 2.40 vs 4.23 ± 0.85, P < 0.01); mRNA of ZO-1 and occludin increased (0.81 ± 0.17 and 0.64 ± 0.16 vs 0.42 ± 0.19, P < 0.01; 0.82 ± 0.22 and 0.76 ± 0.31 vs 0.40 ± 0.15, P < 0.01); protein expression of ZO-1 and occludin was increased (2.07 ± 0.41 and 1.57 ± 0.23 vs 0.85 ± 0.12, P < 0.01; 1.34 ± 0.21 and 1.15 ± 0.17 vs 0.72 ± 0.15, P < 0.01); and the ratio of urinary lactulose/mannitol decreased (2.83 ± 0.43 and 2.87 ± 0.18 vs 3.55 ± 0.68, P < 0.01).

Conclusion: Rhein can enhance the expression of ZO-1 and occludin, repair damaged tight junctions, and protect the intestinal barrier.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710415PMC
http://dx.doi.org/10.3748/wjg.v19.i26.4137DOI Listing

Publication Analysis

Top Keywords

zo-1 occludin
40
intestinal epithelial
24
epithelial tight
20
tight junction
20
expression zo-1
20
tight junctions
16
001
13
iga nephropathy
12
protein expression
12
ratio urinary
12

Similar Publications

Chrysanthemum extract mitigates high-fat diet-induced inflammation, intestinal barrier damage and gut microbiota disorder.

Food Funct

January 2025

Institute of Food Nutrition and Quality Safety, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China.

An effective intervention for obesity without side effects is needed. Chrysanthemum may be the preferred choice due to its influence in the improvement of glycolipid metabolism. This study assessed the efficacy of chrysanthemum and its flavonoids in mitigating high-fat diet (HFD) induced obesity, focusing on the integrity of the intestinal barrier, inflammation, and gut microbiota.

View Article and Find Full Text PDF

C9orf72 Alleviates DSS‑Induced Ulcerative Colitis via the cGAS-STING Pathway.

Immun Inflamm Dis

January 2025

Department of Health Care, Qingdao Municipal Hospital, Qingdao, Shandong, China.

Purpose: C9orf72 deficiency contributes to severe inflammation in mice. Ulcerative colitis (UC) is a chronic inflammatory disorder with the shortage of clinical success. However, whether C9orf72 is involved in the progression of UC is not fully understood.

View Article and Find Full Text PDF

Why do microplastics aggravate cholestatic liver disease? The NLRP3-mediated intestinal barrier integrity damage matter.

Environ Pollut

January 2025

Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410013, PR China. Electronic address:

Microplastics (MPs) are becoming a significant environmental and public health concern because they are present in freshwater and marine environments and are ingested by living organisms. Cholestatic liver disease (CLD) is closely related to intestinal homeostasis, but there are no data investigating the effects of MPs on CLD. In this study, we used Mdr2 mice (a model of CLD) to investigate the effects of polystyrene microplastics (PS-MPs, 0.

View Article and Find Full Text PDF

The incidence of obesity is increasing annually worldwide. A high-fat diet (HFD) causes intestinal barrier damage, but effective interventions are currently unavailable. Our previous work demonstrated the therapeutic effect of nobiletin on obese mice; thus, we hypothesized that nobiletin could reverse HFD-induced damage to the intestinal barrier.

View Article and Find Full Text PDF

Background: The intestinal mucosa of ulcerative colitis patients expresses high levels of interleukin 34, and mice lacking IL-34 have more severe DSS-induced experimental colitis. There are no studies on the effects of directly upregulating intestinal IL-34 on experimental colitis in mice.

Methods: The bacteria EcN/CSF-1 and EcN/IL-34, which express CSF-1 and IL-34, respectively, were genetically engineered from Escherichia coli Nissle 1917 (EcN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!