Gait and balance disorders unresponsive to dopaminergic drugs in Parkinson's disease (PD) are secondary to lesions located outside the dopaminergic system. However, available animal models of PD fail to display l-3,4-dihydroxyphenylalanine (DOPA)-responsive parkinsonism and drug-resistant gait and balance disorders, and this lack of appropriate model could account for the deficit of efficient treatments. Because the pedunculopontine nucleus (PPN) plays an important role in locomotion control, we conducted the present study to investigate the consequences of combined dopaminergic and PPN lesions in a same animal. We used macaques that received first 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication to render them parkinsonian and then local stereotaxic lesion of the PPN. Adding bilateral PPN lesions in MPTP-lesioned macaques induced dopamine-resistant gait and balance disorders but unexpectedly improved hypokinesia. Additional MPTP injections resulted in the association of a severe DOPA-responsive parkinsonism together with DOPA-unresponsive gait disorders. Histological examination assessed a severe dopaminergic degeneration and a significant loss of PPN cholinergic neurons. We observed similar results in aged monkeys intoxicated with MPTP: they developed severe DOPA-responsive hypokinesia and tremor together with unresponsive gait and balance disorders and displayed dopaminergic lesion and a weak but significant cholinergic PPN lesion. Our results highlight the complex role of the cholinergic PPN neurons in the pathophysiology of PD because its lesion induces a dual effect with an improvement of hypokinesia contrasting with a worsening of DOPA-unresponsive gait and balance disorders. Thus, we obtained a primate model of PD that could be useful to test symptomatic treatments for these heavily disabling symptoms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794061 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1568-13.2013 | DOI Listing |
Mult Scler Relat Disord
January 2025
Department of Pharmacy and Health Sciences, Wayne State University, Detroit, USA.
Background: There is growing literature examining the effects of balance training on cognitive function in individuals with multiple sclerosis (MS), yet the findings remain inconsistent. This study aimed to investigate methodological characteristics of balance training studies and examine the effects of this modality on cognitive function.
Methods: This study performed literature search using MEDLINE, EMBASE, PsycINFO, SPORTSDiscus, and CINAHL databases from inception to April 2024.
Cureus
January 2025
Department of Research, Department of Regenerative Medicine, Rinaldi Fontani Foundation, Florence, ITA.
An 88-year-old woman presented with a longstanding history of dizziness, tremors, and progressive mental and physical decline, significantly impairing her mobility and autonomy. Recently discharged from an ICU, the patient required extensive support for daily activities. Diagnostic evaluations, including EEG and analysis, revealed irregular frequency peaks and altered cortical activity, particularly in the frontal and prefrontal regions.
View Article and Find Full Text PDFArch Rehabil Res Clin Transl
December 2024
Northwestern University Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Chicago, IL.
Objective: To analyze changes in balance and gait in patients undergoing rehabilitation postcraniectomy and postcranioplasty, including comparison of outcomes across time periods, rate of change, and among diagnoses.
Design: Retrospective cohort study.
Setting: Inpatient rehabilitation.
Arch Rehabil Res Clin Transl
December 2024
Section of Neurorehabilitation, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
Nystagmus has various clinical manifestations, including downbeat, upbeat, and torsional types, each associated with distinct neurologic features. Current rehabilitative interventions focusing on fixation training and optical correction often fail to achieve complete resolution. When nystagmus coexists with fragile X-associated tremor/ataxia syndrome (FXTAS), functional impairments worsen, particularly affecting balance.
View Article and Find Full Text PDFCommun Med (Lond)
January 2025
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
Background: Declining gait performance is seen in aging individuals, due to neural and systemic factors. Plasma biomarkers provide an accessible way to assess evolving brain changes; non-specific neurodegeneration (NfL, GFAP) or evolving Alzheimer's disease (Aβ 42/40 ratio, P-Tau181).
Methods: In a population-based cohort of older adults, we evaluate the hypothesis that plasma biomarkers of neurodegeneration and Alzheimer's Disease pathology are associated with worse gait performance.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!