The androgen receptor (AR) is important in the development of the prostate by regulating transcription, cellular proliferation, and apoptosis. AR undergoes posttranslational modifications that alter its transcription activity, translocation to the nucleus and stability. The posttranslational modifications that regulate these events are of utmost importance to understand the functional role of AR and its activity. The majority of these modifications occur in the activation function-1 (AF1) region of the AR, which contains the transcriptional activation unit 1 (TAU1) and 5 (TAU5). Identification of the modifications that occur to these regions may increase our understanding of AR activation in prostate cancer and the role of AR in the progression from androgen-dependent to castration-resistant prostate cancer (CRPC). Most of the posttranslational modifications identified to date have been determined using the full-length AR in androgen dependent cells. Further investigations into the role of posttranslational modifications in androgen-independent activation of full-length AR and constitutively active splicing variants are warranted, findings from which may provide new therapeutic options for CRPC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742275 | PMC |
http://dx.doi.org/10.3390/ijms140714833 | DOI Listing |
Cell Commun Signal
January 2025
School of Basic Medical Sciences, Hubei University of Science and Technology, Hubei, 437000, China.
Autophagy dysfunction is associated with changes in autophagy-related genes. Various factors are connected to autophagy, and the mechanism regulating autophagy is highly complicated. Epigenetic changes, such as aberrant expression of histone demethylase, are actively associated not only with oncogenesis but also with inflammatory responses.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.
Determining the structure-function relationships of protein aggregates is a fundamental challenge in biology. These aggregates, whether formed in vitro, within cells, or in living organisms, present significant heterogeneity in their molecular features such as size, structure, and composition, making it difficult to determine how their structure influences their functions. Interpreting how these molecular features translate into functional roles is crucial for understanding cellular homeostasis and the pathogenesis of various debilitating diseases like Alzheimer's and Parkinson's.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
School of Forensic Medicine, Guizhou Medical University, Guiyang, China.
Deubiquitinating enzymes (DUBs) are integral regulators of protein stability. Among these, Ubiquitin-specific protease 18 (USP18) has emerged as a potential therapeutic target for heart failure. However, its precise role in atherosclerosis remains to be comprehensively understood.
View Article and Find Full Text PDFBiomol Biomed
January 2025
Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Medical school of Nantong University, Jiangsu, China.
Sepsis-induced myocardial dysfunction (SIMD) is a severe complication of sepsis, characterized by impaired cardiac function and high mortality rates. Despite significant advances in understanding sepsis pathophysiology, the molecular mechanisms underlying SIMD remain incompletely elucidated. Ubiquitination and deubiquitination, critical post-translational modifications (PTMs) regulating protein stability, localization, and activity, play pivotal roles in cellular processes, such as inflammation, apoptosis, mitochondrial function, and calcium handling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!