AI Article Synopsis

Article Abstract

Mass spectrometry-based platforms have gained increasing success in discovery of ligands bound to therapeutic targets as drug candidates. We established both a nanoelectrospray ionization mass spectrometry (nanoESI-MS) assay and an ultrafiltration liquid chromatography/mass spectrometry (LC/MS) assay to identify new ligands for New Delhi metallo-β-lactamase 1 (NDM-1), responsible for worldwide antibiotic resistance. To alleviate nonspecific binding of hydrophobic compounds and eliminate false positives typically encountered in the indirect LC/MS-based assay, we introduced a blocking protein in the control, which remarkably enhances the selectivity and accuracy of the indirect approach. Side-by-side comparison of the two MS-based approaches for the first time further reveals unique advantages of the indirect approach, including better reproducibility and tolerance of interference. Moreover, the success of fishing out a potent ligand from a mixture of small-molecule fragments demonstrates great potential of the indirect LC/MS-based approach for constructing a robust screening platform against combinatorial libraries or natural product extracts. More importantly, by combining the results of MS-based analyses, enzymatic activity assay, competition experiments, and structural simulation, we discovered a new compound as a promising drug candidate targeting NDM-1.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac401732dDOI Listing

Publication Analysis

Top Keywords

delhi metallo-β-lactamase
8
nanoelectrospray ionization
8
ionization mass
8
mass spectrometry
8
ultrafiltration liquid
8
liquid chromatography/mass
8
chromatography/mass spectrometry
8
indirect lc/ms-based
8
indirect approach
8
identification inhibitors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!