This paper investigates the efficiency of a field separation method for the identification of sound sources in small and non-anechoic spaces. When performing measurements in such environments, the acquired data contain information from the direct field radiated by the source of interest and reflections from walls. To get rid of the unwanted contributions and assess the field radiated by the source of interest, a field separation method is used. Acoustic data (pressure or velocity) are then measured on a hemispheric array whose base is laying on the surface of interest. Then, by using spherical harmonic expansions, contributions from outgoing and incoming waves can be separated if the impedance of the tested surface is high enough. Depending on the probe type, different implementations of the separation method are numerically compared. In addition, the influence of the walls' reflection coefficient is studied. Finally, measurements are performed using an array made-up of 36 p-p probes. Results obtained in a car trunk mock-up with controlled sources are first presented before reporting results measured in a real car running on a roller bench.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4809647 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!