Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acoustic waves traveling in a shallow-water waveguide produce a set of multiple paths that can be characterized as a geometric approximation by their travel time (TT), direction of arrival (DOA), and direction of departure (DOD). This study introduces the use of the DOA and DOD as additional observables that can be combined to the classical TT to track sound-speed perturbations in an oceanic waveguide. To model the TT, DOA, and DOD variations induced by sound-speed perturbations, the three following steps are used: (1) In the first-order Born approximation, the Fréchet kernel provides a linear link between the signal fluctuations and the sound-speed perturbations; (2) a double-beamforming algorithm is used to transform the signal fluctuations received on two source-receiver arrays in the time, receiver-depth, and source-depth domain into the eigenray equivalent measured in the time, reception-angle and launch angle domain; and finally (3) the TT, DOA, and DOD variations are extracted from the double-beamformed signal variations through a first-order Taylor development. As a result, time-angle sensitivity kernels are defined and used to build a linear relationship between the observable variations and the sound-speed perturbations. This approach is validated with parabolic-equation simulations in a shallow-water ocean context.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4809650 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!