The triene-containing C17-benzene ansamycins trienomycins A and F were prepared in 16 steps (longest linear sequence, LLS) and 28 total steps. The C11-C13 stereotriad was generated via enantioselective Ru-catalyzed alcohol CH syn crotylation followed by chelation-controlled carbonyl dienylation. Enantioselective Rh-catalyzed acetylene-aldehyde reductive coupling mediated by gaseous H2 was used to form a diene that ultimately was subjected to diene-diene ring closing metathesis to form the macrocycle. The present approach is 14 steps shorter (LLS) than the prior syntheses of trienomycins A and F, and 8 steps shorter than any prior synthesis of a triene-containing C17-benzene ansamycin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3757526PMC
http://dx.doi.org/10.1021/ja4061273DOI Listing

Publication Analysis

Top Keywords

triene-containing c17-benzene
8
steps shorter
8
total synthesis
4
synthesis +-trienomycins
4
+-trienomycins c-c
4
c-c bond-forming
4
bond-forming hydrogenation
4
hydrogenation transfer
4
transfer hydrogenation
4
hydrogenation triene-containing
4

Similar Publications

The triene-containing C17-benzene ansamycins trienomycins A and F were prepared in 16 steps (longest linear sequence, LLS) and 28 total steps. The C11-C13 stereotriad was generated via enantioselective Ru-catalyzed alcohol CH syn crotylation followed by chelation-controlled carbonyl dienylation. Enantioselective Rh-catalyzed acetylene-aldehyde reductive coupling mediated by gaseous H2 was used to form a diene that ultimately was subjected to diene-diene ring closing metathesis to form the macrocycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!