Density functional calculations and experiments were used to examine mechanisms of Pd(II) catalyzed intramolecular cyclization and dehydration in acyclic and bicyclic monoallylic diols, a formal S(N)2' reaction. In contrast to the previously proposed syn-oxypalladation mechanism for acyclic monoallylic diols, calculations and experiments strongly suggest that hydrogen bonding templates a hydroxyl group and Pd addition across the alkene and provides a low energy pathway via anti-addition (anti-oxypalladation) followed by intramolecular proton transfer and anti-elimination of water. This anti-addition, anti-elimination pathway also provides a simple rationale for the observed stereospecificity. For bicyclic monoallylic diol compounds, Pd(II) is capable of promoting either anti- or syn-addition. In addition, palladium chloride ligands can mediate proton transfer to promote dehydration when direct intramolecular proton transfer between diol groups is impossible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo4012283 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!