Atrial Fibrillation is the most common sustained cardiac arrhythmia worldwide harming millions of people every year. Atrial Fibrillation (AF) abruptly induces rapid conduction between atrial myocytes which is associated with oxidative stress and abnormal calcium handling. Unfortunately this new equilibrium promotes perpetuation of the arrhythmia. Recently, in addition to being the major source of oxidative stress within cells, mitochondria have been observed to fuse, forming mitochondrial networks and attach to intracellular calcium stores in response to cellular stress. We sought to identify a potential role for rapid stimulation, oxidative stress and mitochondrial hyperfusion in acute changes to myocyte calcium handling. In addition we hoped to link altered calcium handling to increased sarcoplasmic reticulum (SR)-mitochondrial contacts, the so-called mitochondrial associated membrane (MAM). We selected the C2C12 murine myotube model as it has previously been successfully used to investigate mitochondrial dynamics and has a myofibrillar system similar to atrial myocytes. We observed that rapid stimulation of C2C12 cells resulted in mitochondrial hyperfusion and increased mitochondrial colocalisation with calcium stores. Inhibition of mitochondrial fission by transfection of mutant DRP1K38E resulted in similar effects on mitochondrial fusion, SR colocalisation and altered calcium handling. Interestingly the effects of 'forced fusion' were reversed by co-incubation with the reducing agent N-Acetyl cysteine (NAC). Subsequently we demonstrated that oxidative stress resulted in similar reversible increases in mitochondrial fusion, SR-colocalisation and altered calcium handling. Finally, we believe we have identified that myocyte calcium handling is reliant on baseline levels of reactive oxygen species as co-incubation with NAC both reversed and retarded myocyte response to caffeine induced calcium release and re-uptake. Based on these results we conclude that the coordinate regulation of mitochondrial fusion and MAM contacts may form a point source for stress-induced arrhythmogenesis. We believe that the MAM merits further investigation as a therapeutic target in AF-induced remodelling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704522PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069165PLOS

Publication Analysis

Top Keywords

calcium handling
28
oxidative stress
20
mitochondrial hyperfusion
12
altered calcium
12
mitochondrial fusion
12
mitochondrial
11
calcium
10
atrial fibrillation
8
atrial myocytes
8
calcium stores
8

Similar Publications

The roles of mitochondria in global and local intracellular calcium signalling.

Nat Rev Mol Cell Biol

January 2025

MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.

Activation of Ca channels in Ca stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca]) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca uptake and chelation, alongside efficient Ca release mechanisms. Still, mitochondria do not store Ca in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca] signals.

View Article and Find Full Text PDF

Mares with endometrosis exhibit histological changes not only in the endometrium but also in the myometrium that suggest possible functional impairment. The molecular background of these changes is not well understood. We hypothesize that the transcriptomic profile of the mare myometrium varies depending on the degree of endometrosis in mares.

View Article and Find Full Text PDF

Control of Synaptotagmin-1 Trafficking by SV2A-Mechanism and Consequences for Presynaptic Function and Dysfunction.

J Neurochem

January 2025

Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, Scotland, UK.

Synaptic vesicle protein 2A (SV2A) is an abundant synaptic vesicle cargo with an as yet unconfirmed role in presynaptic function. It is also heavily implicated in epilepsy, firstly being the target of the leading anti-seizure medication levetiracetam and secondly with loss of function mutations culminating in human disease. A range of potential presynaptic functions have been proposed for SV2A; however its interaction with the calcium sensor for synchronous neurotransmitter release, synaptotagmin-1 (Syt1), has received particular attention over the past decade.

View Article and Find Full Text PDF

Generation of upscaled quantities of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), for therapeutic or testing applications, is both expensive and time-consuming. Herein, a scalable bioprocess for hiPSC-CM expansion in stirred-tank bioreactors (STB) is developed. By combining the continuous activation of the Wnt pathway, through perfusion of CHIR99021, within a mild hypoxia environment, the expansion of hiPSC-CM as aggregates is maximized, reaching 4 billion of pure hiPSC-CM in 2L STB.

View Article and Find Full Text PDF

Background: The antiarrhythmic effect of melatonin(MLT) has been demonstrated in several studies; however, this hypothesis has recently been contested. Our research seeks to determine if exogenous MLT supplementation can reduce atrial fibrillation (AF) susceptibility due to sleep deprivation (SD) by addressing Ca mishandling and atrial mitochondrial oxidative stress.

Methods: Adult rats received daily MLT or vehicle injections and were exposed to a modified water tank.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!