Expression of multiple heterologous genes in a dedicated host is a prerequisite for approaches in synthetic biology, spanning from the production of recombinant multiprotein complexes to the transfer of tailor-made metabolic pathways. Such attempts are often exacerbated, due in most cases to a lack of proper directional, robust and readily accessible genetic tools. Here, we introduce an innovative system for cloning and expression of multiple genes in Escherichia coli BL21 (DE3). Using the novel methodology, genes are equipped with individual promoters and terminators and subsequently assembled. The resulting multiple gene cassettes may either be placed in one vector or alternatively distributed among a set of compatible plasmids. We demonstrate the effectiveness of the developed tool by production and maturation of the NAD(+)reducing soluble [NiFe]-hydrogenase (SH) from Cupriavidus necator H16 (formerly Ralstonia eutropha H16) in E. coli BL21Star™ (DE3). The SH (encoded in hoxFUYHI) was successfully matured by co-expression of a dedicated set of auxiliary genes, comprising seven hyp genes (hypC1D1E1A2B2F2X) along with hoxW, which encodes a specific endopeptidase. Deletion of genes involved in SH maturation reduced maturation efficiency substantially. Further addition of hoxN1, encoding a high-affinity nickel permease from C. necator, considerably increased maturation efficiency in E. coli. Carefully balanced growth conditions enabled hydrogenase production at high cell-densities, scoring mg·(Liter culture)(-1) yields of purified functional SH. Specific activities of up to 7.2±1.15 U·mg(-1) were obtained in cell-free extracts, which is in the range of the highest activities ever determined in C. necator extracts. The recombinant enzyme was isolated in equal purity and stability as previously achieved with the native form, yielding ultrapure preparations with anaerobic specific activities of up to 230 U·mg(-1). Owing to the combinatorial power exhibited by the presented cloning platform, the system might represent an important step towards new routes in synthetic biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3702609 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068812 | PLOS |
J Med Virol
January 2025
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
Coronaviruses (CoVs) pose a significant threat to human health, as demonstrated by the COVID-19 pandemic. The large size of the CoV genome (around 30 kb) represents a major obstacle to the development of reverse genetics systems, which are invaluable for basic research and antiviral drug screening. In this study, we established a rapid and convenient method for generating reverse genetic systems for various CoVs using a bacterial artificial chromosome (BAC) vector and Gibson DNA assembly.
View Article and Find Full Text PDFAnalyst
January 2025
College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
The M13 phage carries approximately 5 copies of the pIII protein, each of which is capable of displaying a single-chain variable fragment (scFv) that targets a specific antigen. This feature enables the M13 phage to be widely employed in the construction of scFv libraries, thereby facilitating the identification of antibodies with high specificity and affinity for target antigens. In this study, mice were immunized three times with (strain C50041) to induce diverse antibodies.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland.
Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
Poplar is an important tree species for timber supply and ecological protection in northern China. Cultivating and selecting high-quality varieties and germplasm resources suitable for cultivation are key factors in enhancing the quality and productivity of poplar plantations in the arid and semi-arid northern regions with shorter growing seasons. This study conducted a field cultivation experiment on 10 progeny clones from the direct cross (D × M) of imported 'DD-109' with and 7 progeny clones from the reciprocal cross (M × D) using one-year-old rooted cuttings planted at a 4 m × 8 m spacing.
View Article and Find Full Text PDFNat Cancer
January 2025
Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
Human tumors are diverse in their natural history and response to treatment, which in part results from genetic and transcriptomic heterogeneity. In clinical practice, single-site needle biopsies are used to sample this diversity, but cancer biomarkers may be confounded by spatiogenomic heterogeneity within individual tumors. Here we investigate clonally expressed genes as a solution to the sampling bias problem by analyzing multiregion whole-exome and RNA sequencing data for 450 tumor regions from 184 patients with lung adenocarcinoma in the TRACERx study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!