Despite the fact that ADP-ribosylation of eukaryotic elongation factor 2 (EF2) leads to inhibition of protein synthesis, the mechanism by which ADP-ribosylated EF2 (ADPR•EF2) causes this inhibition remains controversial. Here, we applied modeling approaches to investigate the consequences of various modes of ADPR•EF2 inhibitory actions on the two coupled processes, the polypeptide chain elongation and ADP-ribosylation of EF2. Modeling of experimental data indicates that ADPR•EF2 fully blocks the late-phase translocation of tRNAs; but the impairment in the translocation upstream process, mainly the GTP-dependent factor binding with the pretranslocation ribosome and/or the guanine nucleotide exchange in EF2, is responsible for the overall inhibition kinetics. The reduced ADPR•EF2-ribosome association spares the ribosome to bind and shield native EF2 against toxin attack, thereby deferring the inhibition of protein synthesis inhibition and inactivation of EF2. Minimum association with the ribosome also keeps ADPR•EF2 in an accessible state for toxins to catalyze the reverse reaction when nicotinamide becomes available. Our work underscores the importance of unveiling the interactions between ADPR•EF2 and the ribosome, and argues against that toxins inhibit protein synthesis through converting native EF2 to a competitive inhibitor to actively disable the ribosome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704607PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0066446PLOS

Publication Analysis

Top Keywords

protein synthesis
12
elongation factor
8
inhibition protein
8
native ef2
8
ef2
7
inhibition
5
adpr•ef2
5
ribosome
5
modes action
4
action adp-ribosylated
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Yonsei University, Incheon, Incheon, Korea, Republic of (South).

Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long-term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer's disease (AD).

Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Amsterdam UMC, Amsterdam, Netherlands.

Background: Irsenontrine (e2027) is a potent and selective PDE9 inhibitor that increases cellular cGMP which is important for glutamatergic synaptic function. Irsenontrine was investigated to improve cognition in Lewy Body Dementia (LBD; DLB and PDD), and recent phase 2 study data suggests that irsenontrine could be more effective in DLB patients without amyloid copathology. Here, we evaluated differential change from baseline levels in proteins associated with cGMP pathway in DLB participants without amyloid co-pathology (DLB A-) compared to DLB participants with amyloid co-pathology (DLB A+).

View Article and Find Full Text PDF

Reduced lipid and glucose oxidation and reduced lipid synthesis in AMPKα2 myotubes.

Arch Physiol Biochem

January 2025

Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway.

Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.

View Article and Find Full Text PDF

An IS element-driven antisense RNA attenuates the expression of serotype 2 fimbriae and the cytotoxicity of .

Emerg Microbes Infect

January 2025

Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France.

Insertion sequences (IS) represent mobile genetic elements that have been shown to be associated with bacterial evolution and adaptation due to their effects on genome plasticity. In , the causative agent of whooping cough, the numerous IS elements induce genomic rearrangements and contribute to the diversity of the global population. Previously, we have shown that the majority of IS-specific endogenous promoters induce the synthesis of alternative transcripts and thereby affect the transcriptional landscape of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!