Nuclear dynamics in a fungal chimera.

Proc Natl Acad Sci U S A

Department of Mathematics, University of California, Los Angeles, CA 90095, USA.

Published: August 2013

A fungal colony is a syncytium composed of a branched and interconnected network of cells. Chimerism endows colonies with increased virulence and ability to exploit nutritionally complex substrates. Moreover, chimera formation may be a driver for diversification at the species level by allowing lateral gene transfer between strains that are too distantly related to hybridize sexually. However, the processes by which genomic diversity develops and is maintained within a single colony are little understood. In particular, both theory and experiments show that genetically diverse colonies may be unstable and spontaneously segregate into genetically homogenous sectors. By directly measuring patterns of nuclear movement in the model ascomycete fungus Neurospora crassa, we show that genetic diversity is maintained by complex mixing flows of nuclei at all length scales within the hyphal network. Mathematical modeling and experiments in a morphological mutant reveal some of the exquisite hydraulic engineering necessary to create the mixing flows. In addition to illuminating multinucleate and multigenomic lifestyles, the adaptation of a hyphal network for mixing nuclear material provides a previously unexamined organizing principle for understanding morphological diversity in the more-than-a-million species of filamentous fungi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3740868PMC
http://dx.doi.org/10.1073/pnas.1220842110DOI Listing

Publication Analysis

Top Keywords

mixing flows
8
hyphal network
8
nuclear dynamics
4
dynamics fungal
4
fungal chimera
4
chimera fungal
4
fungal colony
4
colony syncytium
4
syncytium composed
4
composed branched
4

Similar Publications

Cells use 'active' energy-consuming motor and filament protein networks to control micrometre-scale transport and fluid flows. Biological active materials could be used in dynamically programmable devices that achieve spatial and temporal resolution that exceeds current microfluidic technologies. However, reconstituted motor-microtubule systems generate chaotic flows and cannot be directly harnessed for engineering applications.

View Article and Find Full Text PDF

We report high-spatial-resolution 3D tomographic imaging of HO transportation in laminar jets issued from polygonal (triangular, square, and pentagonal) nozzles using laser absorption spectroscopy. An experimental platform containing a single laser source setup and motorized stages was built for 3D sampling. Numerical analysis was conducted to identify the suitable optical scheme and reconstruction algorithm.

View Article and Find Full Text PDF

A Critical Review of the Decarbonisation Potential in the U.K. Cement Industry.

Materials (Basel)

January 2025

Sustainable Manufacturing Systems Centre, Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield MK43 0AL, UK.

As urbanisation and infrastructure development continue to drive rising cement demand, the imperative to significantly reduce emissions from this emissions-intensive sector has become increasingly urgent, especially in the context of global climate goals such as achieving net zero emissions by 2050. This review examines the status, challenges and prospects of low-carbon cement technologies and mitigation strategies through the lens of the U.K.

View Article and Find Full Text PDF

This study evaluates the performance of continuous flow and drop-based microfluidic devices for the synthesis of silver nanoparticles (AgNPs) under identical hydrodynamic and chemical conditions. Flows at low values of Dean number (De < 1) were investigated, where the contribution of the vortices forming inside the drop to the additional mixing inside the reactor should be most noticeable. In the drop-based microfluidic device, discrete aqueous drops serving as reactors were generated by flow focusing using silicone oil as the continuous phase.

View Article and Find Full Text PDF

In microfluidic chips, glass free-form microchannels have obvious advantages in thermochemical stability and biocompatibility compared to polymer-based channels, but they face challenges in processing morphology and quality. Hence, picosecond laser etching with galvanometer scanning is proposed to machine spiral microfluidic channels on a glass substrate. The objective is to disperse and sort microparticles from a glass microchip that is difficult to cut.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!