Study Question: How does the frequency of trinucleotide repeat dynamic mutations in offspring conceived through assisted reproductive technology (ART) compare with the frequency of these mutations in control offspring conceived from spontaneous pregnancies?
Summary Answer: There is a slight increase in dynamic mutation instability in offspring conceived through ART compared with the naturally conceived offspring.
What Is Known Already: There is evidence to suggest that ART can increase the risk of birth defects and karyotypic abnormalities. However, the accumulating evidence of an association between ART and de novo genetic aberrations is controversial.
Study Design, Size, Duration: A prospective clinical observational study was performed on 246 families recruited from an in vitro fertilisation (IVF) centre at a tertiary-care, university-affiliated teaching hospital from 2008 to 2012. The study included 147 ART families [75 IVF and 72 intracytoplasmic sperm injection (ICSI)] in the study group and 99 natural-conception families in the control group.
Participants, Setting, Methods: Parental, umbilical cord and infant peripheral blood samples were collected, and the trinucleotide repeats of the ATN1, AR, ATXN1, ATXN3, Huntington, DMPK and FMR-1 genes were investigated between the generations; these genes were chosen due to their ability to undergo dynamic mutation. The frequencies and sizes of the mutational repeats, as well as the intergenerational instability, were measured.
Main Results And The Role Of Chance: In 2466 transmissions identified in the ART offspring, 2.11% (n = 52/2466) of the alleles were unstable upon transmission, while in the control group offspring, the frequency of dynamic mutation was 0.77% (n = 10/1300); this difference was statistically significant (P < 0.01). The unstable transmission alleles were detected in 32 (2.48%) of the 1288 alleles from the IVF offspring and in 20 (1.70%) of the 1178 alleles from the ICSI offspring; both of these frequencies were significantly different from that of naturally conceived offspring (0.77%) (P < 0.01 and P < 0.05, respectively). However, there were no significant differences in the sizes of the mutational repeats or in the rates of expansion or contraction among the three groups (P > 0.05). The repeat copy numbers of the examined genes were found to be within the normal ranges in all parents and infants.
Limitations, Reasons For Caution: One strength of our study is the relatively large sample size; we were able to detect mutations in seven common dynamic genes, and this large sample size allowed us to detect unstable alleles. Although we observed a clear alteration in the frequency of dynamic mutation in the ART offspring compared with controls, further studies are urgently needed to confirm this observation and determine the cause of this phenomenon.
Wider Implications Of The Findings: DNA microsatellite analysis provides an important tool to assess genomic instability. In this study, we report an association between ART and the frequency of dynamic mutation. The instability could be a reflection of the core infertility problem, the controlled ovarian hyperstimulation and/or the in vitro culture conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/humrep/det294 | DOI Listing |
Sci Rep
December 2024
Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China. Electronic address:
The robustness and catalytic activity of superoxide dismutase (SOD) are still the main factors limiting their application in industrial fields. This study aims to further improve the properties of a natural thermophilic iron/manganese dual-domain SOD (Fe/Mn-SODA fused with N-terminal polypeptide) from Geobacillus thermodenitrificans NG80-2 (GtSOD) by modifying its each domain using in-depth in silico prediction analysis as well as protein engineering. First, computational analysis of the N-terminal domain and GtSODA domain was respectively performed by using homologous sequence alignment and virtual mutagenesis.
View Article and Find Full Text PDFJ Clin Epidemiol
December 2024
Department of Internal Medicine, Section of Geriatrics and Gerontology, Leiden University Medical Center, Leiden, The Netherlands.
Objective: During the COVID-19 pandemic, dynamic factors such as governmental policies, improved treatment and prevention options and viral mutations changed the incidence of outcomes and possibly changed the relation between predictors and outcomes. The aim of the present study was to assess whether the dynamic context of the pandemic influenced the predictive performance of mortality predictions over time in older patients hospitalised for COVID-19.
Study Design And Setting: The COVID-OLD study, a multicentre cohort study in the Netherlands, included COVID-19 patients aged 70 years and older hospitalised during the first (early 2020), second (late 2020), third (late 2021) or fourth wave (early 2022).
J Biol Chem
December 2024
Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center; Memphis, 38163. Electronic address:
Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid β (Aβ) peptides, is a hotspot for FAD mutations.
View Article and Find Full Text PDFComput Biol Med
December 2024
Department of Physics, Polytechnic University of Catalonia-Barcelona Tech, B4-B5 Northern Campus UPC, Barcelona, 08034, Catalonia, Spain. Electronic address:
The guanine exchange factor SOS1 plays a pivotal role in the positive feedback regulation of the KRAS signaling pathway. Recently, the regulation of KRAS-SOS1 interactions and KRAS downstream effector proteins has emerged as a key focus in the development of therapies targeting KRAS-driven cancers. However, the detailed dynamic mechanisms underlying SOS1-catalyzed GDP extraction and the impact of KRAS mutations remain largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!