Dialkylcyanamides are more reactive substrates toward metal-mediated nucleophilic addition than alkylcyanides.

Dalton Trans

Department of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation.

Published: September 2013

The dialkylcyanamide complexes Q[PtCl3(NCNR2)] (Q = Ph3PCH2Ph, R2 = Me21, Et22, C5H103, C4H8O 4; Q = NMe4, R2 = Me25; Q = NEt4, R2 = Me26) were synthesized either by dissolving Q2[Pt2(μ-Cl)2Cl4] in neat NCNR2 (1-4) or by substitution of a NCNR2 ligand with Cl(-) in [PtCl2(NCNR2)2] by its treatment with QCl (5, 6). Nucleophilic addition of dibenzylhydroxylamine, HON(CH2Ph)2, to 1-6 results in the formation of the complexes Q[PtCl3{NHC(NR2)ON(CH2Ph)2}] (Q = Ph3PCH2Ph, R2 = Me2, 7; Et2, 8; C5H10, 9; C4H8O, 10; Q = Me4N, R2 = Me211; Q = Et4N, R2 = Me2, 12) that further convert at room temperature in the solid state (1-24 h) or in a solution (0.5-2 h) to the imine complexes Q[PtCl3{N(CH2Ph)=C(H)Ph}] (Q = Ph3PCH2Ph, 13; Me4N, 14; Et4N, 15) and the corresponding dialkylureas H2NC(=O)NR2. The competitive reactivity study of the nucleophilic addition of HON(CH2Ph)2 to (Ph3PCH2Ph)[PtCl3(NCR')] (R' = Ph, NR2, CH2Ph) indicated that the reactivity of the coordinated NCNR2 is comparable to NCPh, while NCCH2Ph appeared to be much less reactive than the former two ligands. Compounds 1-6 and 13 were fully characterized by elemental analyses (C, H, N), high resolution ESI-MS, IR, and (1)H and (13)C{(1)H} NMR spectroscopy. The structure of 1 was additionally verified by a single-crystal X-ray diffraction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3dt51137eDOI Listing

Publication Analysis

Top Keywords

nucleophilic addition
12
dialkylcyanamides reactive
4
reactive substrates
4
substrates metal-mediated
4
metal-mediated nucleophilic
4
addition alkylcyanides
4
alkylcyanides dialkylcyanamide
4
dialkylcyanamide complexes
4
complexes q[ptcl3ncnr2]
4
q[ptcl3ncnr2] ph3pch2ph
4

Similar Publications

Structural and kinetic characterization of DUSP5 with a Di-phosphorylated tripeptide substrate from the ERK activation loop.

Front Chem Biol

August 2024

Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, United States.

Introduction: Dual specific phosphatases (DUSPs) are mitogen-activated protein kinase (MAPK) regulators, which also serve as drug targets for treating various vascular diseases. Previously, we have presented mechanistic characterizations of DUSP5 and its interaction with pERK, proposing a dual active site.

Methods: Herein, we characterize the interactions between the DUSP5 phosphatase domain and the pT-E-pY activation loop of ERK2, with specific active site assignments.

View Article and Find Full Text PDF

C-C and C-X bond forming reactions are essential tools in organic synthesis, constantly revolutionizing human life. Among the key methods for constructing new chemical bonds are nucleophilic addition reactions involving imines. However, the inherent challenges in synthesizing and storing imines have stimulated interest in designing stable precursors, which generates imines in situ during the reaction.

View Article and Find Full Text PDF

Herein, we report a method for the regioselective alkylation and phosphonation of quinoline C4-H via a BH-mediated nucleophilic addition of Turbo Grignard reagents and phosphine oxide anions to quinolines bearing different substituents, affording the 4-alkyl and 4-phosphoryl quinolines and tetrahydroquinolines after one-pot oxidation or reduction. The results indicate that coordination of the BH group can activate substrates toward a potential 1,4-dearomative addition and subtly control the regioselectivity by preventing the 1,2-dearomative addition.

View Article and Find Full Text PDF

Column Screening and Development of HILIC and RPLC Methods Coupled to Tandem Mass Spectrometry for the Monitoring of Albumin on Cysteine 34 Exposed to Mustard Agents.

J Sep Sci

January 2025

Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM) Chemistry, Biology and Innovation (CBI), UMR CNRS-ESPCI Paris 8231, ESPCI Paris, PSL University, CNRS, Paris, France.

Adduction on protein nucleophile sites by mustard agents can be monitored to assess detection of retrospective exposure to these agents. Cysteine 34 (Cys34) on human serum albumin was selected as the target of choice. This work targets di- and tripeptides adducted on Cys34 by sulfur mustard, sesquimustard, and nitrogen mustards separated in hydrophilic liquid chromatography (HILIC) and Reversed-Phase (RP) mode.

View Article and Find Full Text PDF

Fluorine and fluorine-containing functional groups play important roles in drugs and agrochemicals. Recently, SAM-dependent methyltransferases and several SAM analogues have been reported for fluoromethyl transfer through a nucleophilic mechanism. However, fluoromethylation of unactivated carbon centers is very challenging, and their substitution usually involves a radical mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!