AI Article Synopsis

  • Notch signaling is shown to regulate the expression of MUC5AC, a key mucin in asthma-related mucus overproduction.
  • Various experiments revealed that activation of Notch can enhance MUC5AC promoter activity while Hes proteins can repress it.
  • This study suggests that targeting the Notch signaling pathway could provide new therapeutic options for managing mucus overproduction in asthma.

Article Abstract

Background: Mucus overproduction is one of the major pathological features of asthma, and MUC5AC is the major mucin component of airway mucus. However, whether Notch signaling is implicated in the regulation of MUC5AC expression in airway secretary cells is still undetermined.

Objective: The aim of this study is to examine whether Notch signaling can regulate MUC5AC expression and explore the molecular mechanisms.

Methods: Mouse mtCC1-2 cells and human NCI-H292 cells were transfected with NIC, and MUC5AC expression was examined. Using gene reporter assays, site-directed mutagenesis, and ChIP assays, the activity of both mouse and human MUC5AC promoter was analyzed.

Results: Notch signaling regulated MUC5AC expression both in mouse mtCC1-2 cells and in human NCI-H292 cells. Several Hes-binding site N-boxes were identified in the 5' region of both mouse and human MUC5AC promoters. Overexpression of NIC resulted in activation of the MUC5AC promoter. Site-directed mutagenesis report assays revealed that Hes proteins might repress both mouse and human MUC5AC promoter activity. Furthermore, ChIP assays confirmed that Hes1 binds to the MUC5AC promoter both in mouse mtCC1-2 cells and in human NCI-H292 cells.

Conclusions: Notch signaling can directly downregulate MUC5AC promoter activity through Hes1-dependent mechanisms, which may be identified as possible targets for pharmacotherapy of airway mucus hypersecretion in asthma.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000350647DOI Listing

Publication Analysis

Top Keywords

notch signaling
20
muc5ac expression
20
muc5ac promoter
20
muc5ac
12
mouse mtcc1-2
12
mtcc1-2 cells
12
cells human
12
human nci-h292
12
mouse human
12
human muc5ac
12

Similar Publications

Foxm1 promotes differentiation of neural progenitors in the zebrafish inner ear.

Dev Biol

January 2025

Biology Department, Texas A&M University, College Station, TX 7843-3258. Electronic address:

During development of the vertebrate inner ear, sensory epithelia and neurons of the statoacoustic ganglion (SAG) arise from lineage-restricted progenitors that proliferate extensively before differentiating into mature post-mitotic cell types. Development of progenitors is regulated by Fgf, Wnt and Notch signaling, but how these pathways are coordinated to achieve an optimal balance of proliferation and differentiation is not well understood. Here we investigate the role in zebrafish of Foxm1, a transcription factor commonly associated with proliferation in developing tissues and tumors.

View Article and Find Full Text PDF

Pancreatic cancer is a highly lethal malignancy with few effective treatment options. Connexin 31 (Cx31) is a membrane protein capable of forming hexameric channels to facilitate the exchange of metabolites and signaling molecules. Yet, the contribution of Cx31 to the onset and progression of pancreatic cancer remains to be understood.

View Article and Find Full Text PDF

[The potential of BCL6B as a therapeutic target for chorioretinal vascular lesions].

Nihon Yakurigaku Zasshi

January 2025

Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University.

The ocular tissue is one of the most densely populated tissues in the body with extremely small blood vessels, and vascular lesions have been reported to be a factor in vision loss and visual field defects in many ocular diseases. Currently, vascular endothelial growth factor (VEGF)-targeted agents are the first line of treatment for intraocular vascular lesions, however, there are some cases in which they are not fully effective. Therefore, we explored pathogenic molecules other than VEGF, aiming to develop new molecular-targeted therapy.

View Article and Find Full Text PDF

Hydrogel-integrated exosome mimetics derived from osteogenically induced mesenchymal stem cells in spheroid culture enhance bone regeneration.

Biomaterials

January 2025

Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA. Electronic address:

Exosomes derived from mesenchymal stem cells (MSCs) offer a promising alternative to traditional cell-based therapies for tissue repair by mitigating risks associated with the transplantation of living cells. However, insufficient osteogenic capacity of exosomes diminishes their potential in bone tissue regeneration. Here, we report novel osteogenically induced exosome mimetics (EMs) integrated into injectable hydrogel carriers for improved bone regeneration.

View Article and Find Full Text PDF

Oral Cancer Stem Cells: A Comprehensive Review of Key Drivers of Treatment Resistance and Tumor Recurrence.

Eur J Pharmacol

January 2025

Department of Conservative Dentistry & Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India. Electronic address:

Oral squamous cell carcinoma (OSCC) remains a major cause of morbidity and mortality worldwide with high recurrence rates and resistance to conventional therapies. Recent studies have highlighted the pivotal role of oral cancer stem cells (OCSCs) in driving treatment resistance and tumor recurrence. OCSCs possess unique properties, including self-renewal, differentiation potential, and resistance to chemotherapy and radiotherapy, which contribute to their ability to survive treatment and initiate tumor relapse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!