Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In addition to the widely used mesenchymal stem cells (MSCs), endothelial cells appear to be a favorable cell source for hard tissue regeneration. Previously, fluorapatite was shown to stimulate and enhance mineralization of MSCs. This study aims to investigate the growth of endothelial cells on synthesized ordered fluorapatite surfaces and their effect on the mineralization of adipose-derived stem cells (ASCs) through coculture. Endothelial cells were grown on fluorapatite surfaces and characterized by cell counting, flow cytometry, scanning electron microscopy, and enzyme-linked immunosorbent assay (ELISA). Cells were then cocultured with ASCs and stained for alkaline phosphatase and mineral formation. Fibroblast growth factor (FGF) pathway perturbation and basic FGF (bFGF) treatment of the ASCs were also conducted to observe their effects on differentiation and mineralization of these cells. Fluorapatite surfaces showed good biocompatibility in supporting endothelial cells. Without a mineralization supplement, coculture with endothelial cells induced osteogenic differentiation of ASCs, which was further enhanced by the fluorapatite surfaces. This suggested a combined stimulating effect of endothelial cells and fluorapatite surfaces on the enhanced mineralization of ASCs. Greater amounts of bFGF release by endothelial cells alone or cocultures with ASCs stimulated by fluorapatite surfaces, together with FGF pathway perturbation and bFGF treatment results, suggested that the FGF signaling pathway may function in this process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875212 | PMC |
http://dx.doi.org/10.1089/ten.TEA.2013.0113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!