Purpose: To investigate the underlying mechanisms of cell-death at extremely high doses of radiation in radioresistant Spodoptera frugiperda-9 (Sf9) insect cells.

Materials And Methods: Morphology, cell proliferation and DNA-fragmentation analysis was performed at 500-2000 Gy. Changes in intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), cardiolipin oxidation and Annexin-V externalization were studied using flow-cytometry. Cytochrome-c release was measured using immunofluorescence microscopy. Inhibitors of apoptosis, i.e., Bongkrekic acid (BKA), Caspase-9 inhibitor (C9i), 5-(4-fluorosulfonylbenzoyl) adenosine hydrochloride (FSBA) and Cyclosporin-A (CsA) were used to dissect apoptotic mechanism at many classical steps. Caspase-3 activity was measured using a caspase-activity assay kit.

Results: A dose-dependent induction of typical apoptosis was observed at extremely high doses, marked by extensive apoptotic body formation. However, certain atypical responses such as cellular hypertrophy and the lack of phosphatidylserine-externalization were observed during the initial hours after radiation. Loss of mitochondrial membrane potential observed at 48 h following a 2000 Gy dose was accompanied by an increase in ROS that caused significant cardiolipin oxidation leading to cytochrome-c release, caspase activation and internucleosomal DNA fragmentation. Inhibitors of B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax)-mediated cytochrome-c release, apoptosome formation and caspase-9 effectively prevented radiation-induced apoptosis, strongly suggesting the role of Bax-dependent cell death mechanism.

Conclusions: Our study demonstrates that the Sf9 insect cells display good homology with human cells in the mitochondria-dependent events during radiation-induced apoptosis, although doses eliciting similar responses were 50-200 times higher than human cells. Factors upstream to mitochondrial damage remain pertinent for a thorough understanding of this extreme radioresistance displayed by lepidopteran cells.

Download full-text PDF

Source
http://dx.doi.org/10.3109/09553002.2013.825059DOI Listing

Publication Analysis

Top Keywords

sf9 insect
12
high doses
12
cytochrome-c release
12
insect cells
8
extremely high
8
mitochondrial membrane
8
membrane potential
8
cardiolipin oxidation
8
radiation-induced apoptosis
8
human cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!