The present paper reports the applicability of magnetite (Fe3O4) nanoparticles as an adsorbent for the removal of three dyes viz. Acridine orange (cationic dye), Comassie Brilliant Blue R-250 (anionic dye) and Congo red (azo dye) from their aqueous solution. The Fe3O4 nanoparticles were synthesized via simple chemical precipitation method using CTAB, as surfactant. The as-prepared nanoparticles were characterized in terms of their morphological, structural and optical properties by using transmission electron microscopy X-ray diffraction and UV-visible spectroscopic measurements. The dye removal efficiency of Fe3O4 NPs have been determined by investigating several factors such as effect of pH, amount of adsorbent dose and effect of contact time on different dye concentrations. Langmuir and Freundlich adsorption isotherms have also been studied to explain the interaction of dyes. The experimental data indicate that the adsorption rate follows pseudo- second-order kinetics for the removal of all the three dyes. Moreover, the nanoparticles and the adsorbed dyes were desorbed. The identities of recovered nanoparticles as well as the three dyes have been found, as same and were reused.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2013.7152 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!