Ecotropic viral integration site-1 (EVI1) is an oncogenic zinc finger transcription factor whose expression is frequently up-regulated in myeloid leukemia and epithelial cancers. To better understand the mechanisms underlying EVI1-associated disease, we sought to define the EVI1 interactome in cancer cells. By using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics, we could confidently assign 78 proteins as EVI1-interacting partners for FLAG-tagged EVI1. Subsequently, we showed that 22 of 27 tested interacting proteins could coimmunoprecipitate with endogenous EVI1 protein, which represented an 81.5% validation rate. Additionally, by comparing the stable isotope labeling by amino acids in cell culture (SILAC) data with high-throughput yeast two hybrid results, we showed that five of these proteins interacted directly with EVI1. Functional classification of EVI1-interacting proteins revealed associations with cellular transcription machinery; modulators of transcription; components of WNT, TGF-β, and RAS pathways; and proteins regulating DNA repair, recombination, and mitosis. We also identified EVI1 phosphorylation sites by MS analysis and showed that Ser538 and Ser858 can be phosphorylated and dephosphorylated by two EVI1 interactome proteins, casein kinase II and protein phosphatase-1α. Finally, mutations that impair EVI1 phosphorylation at these sites reduced EVI1 DNA binding through its C-terminal zinc finger domain and induced cancer cell proliferation. Collectively, these combinatorial proteomic approaches demonstrate that EVI1 interacts with large and complex networks of proteins, which integrate signals from various different signaling pathways important for oncogenesis. Comprehensive analysis of the EVI1 interactome has thus provided an important resource for dissecting the molecular mechanisms of EVI1-associated disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732971PMC
http://dx.doi.org/10.1073/pnas.1309310110DOI Listing

Publication Analysis

Top Keywords

evi1
12
evi1 interactome
12
interacts large
8
large complex
8
proteins
8
zinc finger
8
evi1-associated disease
8
stable isotope
8
isotope labeling
8
labeling amino
8

Similar Publications

[Clinical characteristics and prognosis of acute erythroleukemia in children].

Zhongguo Dang Dai Er Ke Za Zhi

January 2025

Department of Children's Hematology and Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.

Objectives: To investigate the clinical characteristics and prognosis of acute erythroleukemia (AEL) in children.

Methods: A retrospective analysis was conducted on the clinical data, treatment, and prognosis of 8 children with AEL treated at the First Affiliated Hospital of Zhengzhou University from January 2013 to December 2023.

Results: Among the 7 patients with complete bone marrow morphological analysis, 4 exhibited trilineage dysplasia, with a 100% incidence of erythroid dysplasia (7/7), a 71% incidence of myeloid dysplasia (5/7), and a 57% incidence of megakaryocytic dysplasia (4/7).

View Article and Find Full Text PDF

The transcriptional regulatory factors binding to the polymorphic site C-1888T in the promoter region of the palate, lung, and nasal epithelium clone (PLUNC) gene were identified to investigate whether the C-1888T polymorphic site affects the transcriptional regulation and function of PLUNC gene. Three genotypes of C-1888T polymorphic locus were screened from established nasopharyngeal carcinoma (NPC) cells, and the mRNA expression levels of PLUNC gene in different genotypes were detected. The respective transcription factors that were more likely to bind with A or G in SNP were predicted by biological information and preliminarily verified in vitro by gel electrophoresis migration rate analysis.

View Article and Find Full Text PDF

Background/aim: Myelodysplastic syndromes (MDSs) are clonal bone marrow disorders characterized by ineffective hematopoiesis. They are classified based on morphology and genetic alterations, with SF3B1 variants linked to favorable prognosis and MECOM rearrangements associated with poor outcomes. The combined effects of these alterations remain unclear.

View Article and Find Full Text PDF

Evi1 governs Kdm6b-mediated histone demethylation to regulate the Laptm4b-driven mTOR pathway in hematopoietic progenitor cells.

J Clin Invest

December 2024

Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA.

Ecotropic viral integration site 1 (EVI1/MECOM) is frequently upregulated in myeloid malignancies. Here, we present an Evi1-transgenic mouse model with inducible expression in hematopoietic stem/progenitor cells (HSPCs). Upon induction of Evi1 expression, mice displayed anemia, thrombocytopenia, lymphopenia, and erythroid and megakaryocyte dysplasia with a significant expansion of committed myeloid progenitor cells, resembling human myelodysplastic syndrome/myeloproliferative neoplasm-like (MDS/MPN-like) disease.

View Article and Find Full Text PDF

Clinical significance of dynamic monitoring of EVI1 gene expression in pediatric acute myeloid leukemia.

BMC Pediatr

December 2024

Department of Hematology, Children's Medical Institute of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China.

Objective: To investigate the clinical significance of dynamic monitoring ecotropic virus integration site-1 (EVI1) expression in childhood acute myeloid leukemia (AML).

Methods: A retrospective analysis was conducted on 113 pediatric AML patients of Wuhan Children's Hospital from 2014 to 2022. The correlation between EVI1 expression levels and clinical indicators including clinical characteristics, first complete remission (CR1), relapse, and overall survival (OS) was analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!