CarD, an essential transcription regulator in Mycobacterium tuberculosis, directly interacts with the RNA polymerase (RNAP). We used a combination of in vivo and in vitro approaches to establish that CarD is a global regulator that stimulates the formation of RNAP-holoenzyme open promoter (RPo) complexes. We determined the X-ray crystal structure of Thermus thermophilus CarD, allowing us to generate a structural model of the CarD/RPo complex. On the basis of our structural and functional analyses, we propose that CarD functions by forming protein/protein and protein/DNA interactions that bridge the RNAP to the promoter DNA. CarD appears poised to interact with a DNA structure uniquely presented by the RPo: the splayed minor groove at the double-stranded/single-stranded DNA junction at the upstream edge of the transcription bubble. Thus, CarD uses an unusual mechanism for regulating transcription, sensing the DNA conformation where transcription bubble formation initiates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732983 | PMC |
http://dx.doi.org/10.1073/pnas.1308270110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!