AI Article Synopsis

  • * MAO A/B knockout (KO) mice show heightened fear responses and increased eye-blink conditioning compared to normal mice, indicating cognitive changes related to abnormal neurotransmitter levels.
  • * These findings suggest that the chronic increase in monoamines due to the absence of MAOs leads to significant functional and cellular changes in learning and memory, positioning MAO A/B KO mice as a valuable model for studying related disorders.

Article Abstract

The monoamine oxidase isoenzymes (MAOs) A and B play important roles in the homeostasis of monoaminergic neurotransmitters. The combined deficiency of MAO A and B results in significantly elevated levels of serotonin (5-hydroxytryptamine), norepinephrine, dopamine, and β-phenylethylamine; in humans and mice, these neurochemical changes are accompanied by neurodevelopmental perturbations as well as autistic-like responses. Ample evidence indicates that normal levels of monoamines in the hippocampus, amygdala, frontal cortex, and cerebellum are required for the integrity of learning and memory. Thus, in the present study, the cognitive status of MAO A/B knockout (KO) mice was examined with a wide array of behavioral tests. In comparison with male wild-type littermates, MAO A/B KO mice exhibited abnormally high and overgeneralized fear conditioning and enhanced eye-blink conditioning. These alterations were accompanied by significant increases in hippocampal long-term potentiation and alterations in the relative expression of NMDA glutamate receptor subunits. Our data suggest that chronic elevations of monoamines, because of the absence of MAO A and MAO B, cause functional alterations that are accompanied with changes in the cellular mechanisms underlying learning and memory. The characteristics exhibited by MAO A/B KO mice highlight the potential of these animals as a useful tool to provide further insight into the molecular bases of disorders associated with abnormal monoaminergic profiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732950PMC
http://dx.doi.org/10.1073/pnas.1308037110DOI Listing

Publication Analysis

Top Keywords

mao a/b
12
monoamine oxidase
8
knockout mice
8
learning memory
8
a/b mice
8
alterations accompanied
8
mao
6
mice
5
cognitive abnormalities
4
abnormalities hippocampal
4

Similar Publications

Monoamine oxidase B (MAO-B) inhibitors are widely used as part of combination drug therapy for Parkinson's disease. As demonstrated in both in vitro and in vivo experiments, the monoterpenoid Prottremine and some of its derivatives exhibit high antiparkinsonian activity. In this study, the inhibitory activity of Prottremine and its derivatives (including 14 new 9-- and -derivatives) against MAO-A and MAO-B enzymes has been investigated for the first time.

View Article and Find Full Text PDF

Monoamine oxidase B (MAO-B) is a key enzyme in the mitochondrial outer membrane, pivotal for the oxidative deamination of biogenic amines. Its overexpression has been implicated in the pathogenesis of several cancers, including glioblastoma and colorectal, lung, renal, and bladder cancers, primarily through the increased production of reactive oxygen species (ROS). Inhibition of MAO-B impedes cell proliferation, making it a potential therapeutic target.

View Article and Find Full Text PDF

The gut-brain axis underlying hepatic encephalopathy in liver cirrhosis.

Nat Med

January 2025

Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.

Up to 50-70% of patients with liver cirrhosis develop hepatic encephalopathy (HE), which is closely related to gut microbiota dysbiosis, with an unclear mechanism. Here, by constructing gut-brain modules to assess bacterial neurotoxins from metagenomic datasets, we found that phenylalanine decarboxylase (PDC) genes, mainly from Ruminococcus gnavus, increased approximately tenfold in patients with cirrhosis and higher in patients with HE. Cirrhotic, not healthy, mice colonized with R.

View Article and Find Full Text PDF

Ashwagandha () is a popular herb in Ayurveda, the traditional medicine system in India. It is known to exert stress-mitigating properties and has been extensively studied for its safety and efficacy in various disorders. This study assessed the effects of Ashwagandha root extract (ARE) on stress in rats.

View Article and Find Full Text PDF

It is believed that inflammation influences several physiological processes, including the function of the central nervous system. Moreover, the impairment of lipid mechanisms/pathways is associated with neurodegenerative disorders and onset of Alzheimer's disease (AD). AD is a chronic neurodegenerative disease representing the major cause of dementia worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!