The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382362PMC
http://dx.doi.org/10.1007/s13191-012-0118-9DOI Listing

Publication Analysis

Top Keywords

tensile strength
24
laser welding
20
ultimate tensile
16
alloy samples
16
conventional welding
12
welded joints
12
welding
9
tensile
8
welding tensile
8
strength ultimate
8

Similar Publications

Bone defects present a significant challenge in orthopedics and trauma surgery, necessitating innovative approaches to stimulate effective bone regeneration. This study investigated the potential of lithium-doped calcium silicate (LiCS) cement to enhance bone regeneration and modulate the immune microenvironment to promote tissue repair. We synthesized a LiCS ceramic powder and performed comprehensive analyses of its physicochemical properties, including phase composition, morphology, setting time, and mechanical strength.

View Article and Find Full Text PDF

The increasing demand for protein-rich, plant-based foods has driven the development of meat analogs that closely mimic the texture and mouthfeel of animal meat. While plant-based fibrils and electrospun silk fibroin fibers have been explored for texture enhancement and scaffolding in both meat analogs and cell-based meats, the use of wet-spun fibroin protein fibers as a food ingredient remains underexplored. This study investigates the potential of wet-spun recombinant fibroin fibers to enhance the textural properties of meat analogs.

View Article and Find Full Text PDF

It is significant to study the stability of surrounding rock in soft rock tunnels to ensure construction safety and improve efficiency. Through triaxial shear tests on soft rock at various confining pressures, we observed the failure characteristics transitioning from strain softening to strain hardening as confining pressure increases. An improved Hoek-Brown strength criterion has been proposed to characterize the critical confining pressure effect of soft rock, with tensile strength in the tensile zone aligning with experimental results, showing an error of less than 5%.

View Article and Find Full Text PDF

This investigation addresses the reinforcement of rammed earth (RE) structures by integrating carpet polyacrylic yarn waste (CPYW) generated from the carpet production process and employing Ground Granulated Blast-Furnace Slag (GGBS) as a stabilizer, in conjunction with alkali activators potassium hydroxide (KOH), to enhance their mechanical properties. The study included conducting Unconfined Compressive Strength (UCS) tests and Brazilian Tensile Strength (BTS) tests on plain samples, GGBS-stabilized (SS) samples, CPYW-reinforced (CFS) samples, and samples reinforced with a combination of GGBS and CPYW (SCFS). The results showed that the mechanical and resistance properties of the CFS and SCFS samples were improved; these findings were confirmed by the presence of more cohesive GGBS gel and fibers as seen in FE-SEM and microscopic images.

View Article and Find Full Text PDF

Food commodities, including mycotoxins naturally produced from toxigenic fungi (pre- or post-harvest), are particularly vulnerable to contamination. The study intended to use unique bioactive composites loaded with antimicrobial constituents for food packaging. Three composite types are based on carboxymethyl cellulose/shellac (CMC/SH) and loaded with pomegranate extract (POE) with or without jojoba oil (JOE) at various concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!