A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Steroid hormone (20-hydroxyecdysone) modulates the acquisition of aversive olfactory memories in pollen forager honeybees. | LitMetric

AI Article Synopsis

  • The steroid hormone 20-hydroxyecdysone (20-E) negatively affects honeybees' ability to learn aversive odors associated with punishment, although it doesn't hinder their learning of scents linked to food rewards.
  • 20-E influences the expression of certain amine-receptor genes in the honeybee brain, particularly affecting dopamine receptor genes linked to memory formation.
  • The study suggests a crucial role of the putative dopamine/ecdysone receptor, AmGPCR19, in the hormonal regulation of associative olfactory learning in honeybees, especially during their early development stages.

Article Abstract

Here, we examine effects of the steroid hormone, 20-hydroxyecdysone (20-E), on associative olfactory learning in the honeybee, Apis mellifera. 20-E impaired the bees' ability to associate odors with punishment during aversive conditioning, but did not interfere with their ability to associate odors with a food reward (appetitive learning). The steroid had a significant impact also on the expression of amine-receptor genes in centers of the brain involved in the formation and recall of associative olfactory memories (mushroom bodies). 20-E increased expression of the dopamine receptor gene, Amdop2, and reduced the expression of the putative dopamine/ecdysone receptor gene, Amgpcr19. Interestingly, Amgpcr19 tended to be highly expressed in the brains of foragers that exhibited strong aversive learning, but expressed at lower levels in bees that performed well in appetitive learning assays. In 2-d-old bees, transcript levels of the same gene could be reduced by queen mandibular pheromone, a pheromone that blocks aversive learning in young worker bees. As ecdysteroid levels rise to a peak ∼2 d after adult emergence and then fall to low levels in foragers, we examined aversive learning also in young worker bees. Aversive learning performance in 2-d-old bees was consistently poor. The results of this study indicate that learning in honeybees can be modulated by ecdysteroids. They highlight, in addition, a potential involvement of the putative dopamine/ecdysone receptor, AmGPCR19, in hormonal regulation of associative olfactory learning in the honeybee.

Download full-text PDF

Source
http://dx.doi.org/10.1101/lm.030825.113DOI Listing

Publication Analysis

Top Keywords

aversive learning
16
associative olfactory
12
learning
9
steroid hormone
8
hormone 20-hydroxyecdysone
8
olfactory memories
8
olfactory learning
8
learning honeybee
8
ability associate
8
associate odors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!