Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201303928 | DOI Listing |
Environ Sci Technol
January 2025
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
Pt/CeO single-atom catalysts are attractive materials for CO oxidation but normally show poor activity below 150 °C mainly due to the unicity of the originally symmetric PtO structure. In this work, a highly active and stable Pt/CeO single-site catalyst with only 0.1 wt % Pt loading, achieving a satisfied complete conversion of CO at 150 °C, can be obtained through fabricating asymmetric PtO-oxygen vacancies (O) dual-active sites induced by well-dispersed NbO clusters.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.
Chiral medium-sized rings, albeit displaying attractive properties for drug development, suffer from numerous synthetic challenges due to difficult cyclization steps that must take place to form these unusually strained, atropisomeric rings from sterically crowded precursors. In fact, catalytic enantioselective cyclization methods for the formation of chiral seven-membered rings are unknown, and the corresponding eight-membered variants are also sparse. In this work, we present a substrate preorganization-based, enantioselective, organocatalytic strategy to construct seven- and eight-membered rings featuring chirality that is intrinsic to the ring in the absence of singular stereogenic atoms or single bond axes of chirality.
View Article and Find Full Text PDFOrg Lett
January 2025
Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
An asymmetric photoredox catalytic Minisci-type reaction between α-bromide amides and imine-containing azaarenes has been successfully developed. This catalyst system employs a chiral phosphoric acid alongside 3DPAFIPN as a photosensitizer. The reaction produces a diverse array of valuable amides, featuring azaarene-substituted tertiary carbon stereocenters at the β-position, in high yields (up to 85%) and good to excellent enantioselectivities (up to >99% enantiomeric excess (ee)).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tianjin University, School of Materials Science and Engineering, CHINA.
Precisely manipulating asymmetric coordination configurations and examining electronic effects enable to tuning the intrinsic oxygen reduction reaction (ORR) activity of single-atom catalysts (SACs). However, the shortage of a definite relationship between coordination asymmetry and catalytic activity makes the rational design of SACs ambiguous. Here, we propose a concept of "asymmetry degree" to quantify asymmetric coordination configurations and assess the effectiveness of active moieties in Fe-based SACs.
View Article and Find Full Text PDFNat Commun
January 2025
College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, P. R. China.
The enantioselective domino Heck/cross-coupling has emerged as a powerful tool in modern chemical synthesis for decades. Despite significant progress in relative rigid skeleton substrates, the implementation of asymmetric Heck/cross-coupling cascades of highly flexible haloalkene substrates remains a challenging and and long-standing goal. Here we report an efficient asymmetric domino Heck/Tsuji-Trost reaction of highly flexible vinylic halides with 1,3-dienes enabled by palladium catalysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!