Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review.

Anal Chim Acta

Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Science, Aristotle University, Thessaloniki, Greece.

Published: July 2013

The use of magnetic materials in solid phase extraction has received considerable attention in recent years taking into account many advantages arising from the inherent characteristics of magnetic particles. Magnetic solid phase extraction (MSPE) methodology overcomes problems such as column packing and phase separation, which can be easily performed by applying an external magnetic field. The use of magnetic particles in automatic systems is growing over the last few years making the on-line operation of MSPE a promising technique in the frame of green chemistry. This article aims to provide all recent progress in the research of novel magnetic materials as sorbents for metal preconcentration and determination coupled with different detection systems as well as their implementation in sequential injection and microfluidic systems. In addition, a description of preparation, characterization as well as applications of various types of magnetic materials, either with organic or inorganic coating of the magnetic core, is presented. Concluding remarks and future trends are also commented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2013.04.021DOI Listing

Publication Analysis

Top Keywords

magnetic materials
16
magnetic
9
materials sorbents
8
solid phase
8
phase extraction
8
magnetic particles
8
sorbents metal/metalloid
4
metal/metalloid preconcentration
4
preconcentration and/or
4
and/or separation
4

Similar Publications

Impact of climate change that stems from gaseous emissions require sustainable materials to eliminate sulfur.  This study involves the modification of humic acid with magnetite nanoparticles (Fe₃O₄ NPs) by a microwave-assisted synthesis of an absorbent with reasonable pore volume and diameter for elimination of thiophenic compounds from fuel. The magnetic nano adsorbent designated Fe3O4@HA was characterized using advanced spectroscopic techniques, while their structure and morphology were analyzed through DLS, XPS, XRD, FT-IR, TGA, FESEM-EDX, VSM, and BET-N2 techniques.

View Article and Find Full Text PDF

Aim: To investigate the predictive value of lesion length in multiparametric prostate magnetic resonance imaging with respect to prostate volume for clinically significant prostate cancer diagnosis in targeted biopsies.

Materials And Methods: The data of biopsy-naïve patients in the Turkish Urooncology Association Prostate Cancer Database who underwent targeted prostate biopsies were included in this study. Lesion density is calculated as the ratio of lesion length (mm) in MR to prostate volume (cc).

View Article and Find Full Text PDF

Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.

View Article and Find Full Text PDF

Objectives: Most human brains exhibit left hemisphere asymmetry for planum temporale (PT) surface area and gray matter volume, which is interpreted as cerebral lateralization for language. Once considered a uniquely human feature, PT asymmetries have now been documented in chimpanzees and olive baboons. The goal of the current study was to further investigate the evolution of PT asymmetries in nonhuman primates.

View Article and Find Full Text PDF

Tuneable, variable, optical attenuation through an optical circulator with a broad, linear attenuation range of Δ ∼ (30-40) dB is demonstrated using non-reciprocal Faraday rotation in a double-pass configuration with a combination of permanent magnets and an electromagnet. A fiber-coupled magneto-optical variable optical attenuator (MVOA) operates over the near IR with an attenuation tuning range of Δ > 30 dB, a resolution of Δ ∼ 0.02 dB, a response time of  < 2 ms, and a temperature dependence over  = 25-70°C of Δ / Δ = -8 × 10 dB/°C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!