Both pharmacophore models of the human ether-à-go-go-related gene (hERG) channel blockers and phospholipidosis (PLD) inducers contain a hydrophobic moiety and a hydrophilic motif/positively charged center, so it is interesting to investigate the overlap between the ligand chemical spaces of both targets. We have assayed over 4000 non-redundant drug-like compounds for both their hERG inhibitory activity and PLD inducing potential in a quantitative high throughput screening (qHTS) format. Seventy-seven percent of PLD inducing compounds identified from the screening were also found to be hERG channel blockers, and 96.9% of the dually active compounds were positively charged. Among the 48 compounds that induced PLD without inhibiting hERG channel, 24 compounds (50.0%) carried steroidal structures. According to our results, hERG channel blockers and PLD inducers share a large chemical space. In addition, a positively charged hERG channel blocker will most likely induce PLD, while a steroid PLD inducer is less likely a hERG channel blocker.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736554 | PMC |
http://dx.doi.org/10.1016/j.bmcl.2013.06.034 | DOI Listing |
J Cheminform
January 2025
Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, Republic of Korea.
The human ether-a-go-go-related gene (hERG) channel plays a critical role in the electrical activity of the heart, and its blockers can cause serious cardiotoxic effects. Thus, screening for hERG channel blockers is a crucial step in the drug development process. Many in silico models have been developed to predict hERG blockers, which can efficiently save time and resources.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616.
The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.
View Article and Find Full Text PDFMetabolites
January 2025
Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR6226, 35000 Rennes, France.
Background/objectives: extract, obtained via microwave-enhanced extraction, was evaluated for its antioxidant, antidiabetic, and antimicrobial activities to explore its therapeutic potential.
Methods: The extraction was performed using microwave-enhanced techniques, and LC-MS/MS was employed to profile the metabolites in the extract. Total phenolic and flavonoid contents were quantified using spectrophotometric methods.
J Mol Cell Biol
January 2025
Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.
Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.
View Article and Find Full Text PDFJ Venom Anim Toxins Incl Trop Dis
January 2025
School of Health Santa Casa BH, Belo Horizonte, MG, Brazil.
Background: This study examines the impact of Phα1β, a spider peptide derived from the venom of , on the Kv11.1 potassium channel in HEK293 cells transfected with the human ERG potassium channel. Phα1β inhibits high-voltage calcium channels and acts as an antagonist of the TRPA1 receptor, both of which play crucial roles in pain transduction pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!