Ionic liquids (ILs) are ionic compounds that are liquid at room temperature. We studied the spontaneous mixing behavior between two ILs, ethylammonium nitrate (EAN) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), and observed notable phenomena. Experimental studies showed that the interface between the two ILs was unusually long-lived, despite the ILs being miscible with one another. Molecular dynamics (MD) simulations supported these findings and provided insight into the micromixing behavior of the ILs. We found that not only did the ions experience slow diffusion as they mix but also exhibited significant ordering into distinct regions. We suspect that this ordering disrupted concentration gradients in the direction normal to the interface, thus hindering diffusion in this direction and allowing the macroscopic interface to remain for long periods of time. Intermolecular interactions responsible for this behavior included the O-NH interaction between the EAN ions and the carbon chain-carbon chain interactions between the [BMIM](+) cations, which associate more strongly in the mixed state than in the pure IL state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la402158n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!