A new ion trapping technique, involving the accumulation of ions in a cyclical drift tube, as a means of enhancing ion signals for scanning ion cyclotron mobility measurements has been modeled by computational simulations and demonstrated experimentally. In this approach, multiple packets of ions are periodically released from a source region into the on ramp region of the cyclical drift tube and these pulses are accumulated prior to initiation of the mobility measurements. Using this ion trapping approach, it was possible to examine ions that traversed between 1.83 and 182.86 m (from 1 to 100 cycles). Overall, we observe that instrumental resolving power improves with increasing cycle numbers; at 100 cycles, a resolving power in excess of 1000 can be achieved. The utility of this method as a means of distinguishing between analytes is demonstrated by examining the well-characterized model peptides substance P, angiotensin II, and bradykinin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac4015066 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!