In the mouse 55°C warm-water tail-withdrawal assay, a single administration of nor-binaltorphimine (nor-BNI; 10 mg/kg i.p.) antagonized κ-opioid receptor (KOR) agonist-induced antinociception up to 14 days, whereas naloxone (10 mg/kg i.p.)-mediated antagonism lasted less than 1 day. In saturation binding experiments, mouse brain membranes isolated and washed 1 or 7 (but not 14) days after nor-BNI administration demonstrated a significant time-dependent decrease in maximal KOR agonist [(3)H]U69,593 binding. To determine whether brain concentrations of nor-BNI were sufficient to explain the antagonism of KOR-mediated antinociception, mouse blood and perfused brain were harvested at time points ranging from 30 minutes to 21 days after a single administration and analyzed for the presence of nor-BNI using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Nor-BNI was detected in the perfused brain homogenate up to 21 days after administration (30 nmol i.c.v. or 10 mg/kg i.p.). Subsequent experiments in which nor-BNI was administered at doses estimated from the amounts detected in the brain homogenates isolated from pretreated mice over time demonstrated significant antagonism of U50,488 antinociception in a manner consistent with the magnitude of observed KOR antagonism. The dose (1.4 nmol) approximating the lowest amount of nor-BNI detected in brain on day 14 did not antagonize U50,488-induced antinociception, consistent with the absence of U50,488 antagonism observed in vivo at this time point after pretreatment. Overall, the physical presence of nor-BNI in the mouse brain paralleled its in vivo pharmacological profile, suggesting physicochemical and pharmacokinetic properties of nor-BNI may contribute to the prolonged KOR antagonism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.113.206086 | DOI Listing |
Acta Neuropathol
January 2025
Department of Clinical Sciences, Lund Brain Injury Laboratory for Neurosurgical Research, Lund University, 222 20, Lund, Sweden.
Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer's-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Modelling of Cognitive Processes, Berlin Institute of Technology, Berlin 10587, Germany.
Neuronal processing of external sensory input is shaped by internally generated top-down information. In the neocortex, top-down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114.
Ependymoma (EPN) is a common form of brain tumor in children, often resistant to available cytotoxic therapies. Molecular profiling studies have led to a better understanding of EPN subtypes and revealed a critical role of oncogenes ZFTA-RELA fusion and EPHB2 in supratentorial ependymoma (ST-EPN). However, the immune system's role in tumor progression and response to therapy remains poorly understood.
View Article and Find Full Text PDFElife
January 2025
Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Cologne, Germany.
Orexin signaling in the ventral tegmental area and substantia nigra promotes locomotion and reward processing, but it is not clear whether dopaminergic neurons directly mediate these effects. We show that dopaminergic neurons in these areas mainly express orexin receptor subtype 1 (Ox1R). In contrast, only a minor population in the medial ventral tegmental area express orexin receptor subtype 2 (Ox2R).
View Article and Find Full Text PDFJ Neurochem
January 2025
Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!