Identification of a mycoloyl transferase selectively involved in O-acylation of polypeptides in Corynebacteriales.

J Bacteriol

Team Enveloppes Mycobactériennes, Structure Biosynthèse et Rôles, Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et Biologie Structurale (IPBS), Département Mécanismes Moléculaires des Infections Mycobactériennes, UMR 5089, Toulouse, France.

Published: September 2013

We have previously described the posttranslational modification of pore-forming small proteins of Corynebacterium by mycolic acid, a very-long-chain α-alkyl and β-hydroxy fatty acid. Using a combination of chemical analyses and mass spectrometry, we identified the mycoloyl transferase (Myt) that catalyzes the transfer of the fatty acid residue to yield O-acylated polypeptides. Inactivation of corynomycoloyl transferase C (cg0413 [Corynebacterium glutamicum mytC {CgmytC}]), one of the six Cgmyt genes of C. glutamicum, specifically abolished the O-modification of the pore-forming proteins PorA and PorH, which is critical for their biological activity. Expectedly, complementation of the cg0413 mutant with either the wild-type gene or its orthologues from Corynebacterium diphtheriae and Rhodococcus, but not Nocardia, fully restored the O-acylation of the porins. Consistently, the three-dimensional structure of CgMytC showed the presence of a unique loop that is absent from enzymes that transfer mycoloyl residues onto both trehalose and the cell wall arabinogalactan. These data suggest the implication of this structure in the enzyme specificity for protein instead of carbohydrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754736PMC
http://dx.doi.org/10.1128/JB.00285-13DOI Listing

Publication Analysis

Top Keywords

mycoloyl transferase
8
fatty acid
8
identification mycoloyl
4
transferase selectively
4
selectively involved
4
involved o-acylation
4
o-acylation polypeptides
4
polypeptides corynebacteriales
4
corynebacteriales described
4
described posttranslational
4

Similar Publications

Background: Bacillus calmette guerin (BCG) immunization has been associated with a reduction in Mycobacterium tuberculosis (MTB) infection. BCG immunization has been shown to enhance innate immunity. This effect of BCG can be explained by an enhancing effect on innate immunity.

View Article and Find Full Text PDF

Mycobacteria and related organisms in the Corynebacterineae suborder are characterized by a distinctive outer membrane referred to as the mycomembrane. Biosynthesis of the mycomembrane occurs through an essential process called mycoloylation, which involves antigen 85 (Ag85)-catalyzed transfer of mycolic acids from the mycoloyl donor trehalose monomycolate (TMM) to acceptor carbohydrates and, in some organisms, proteins. We recently described an alkyne-modified TMM analogue (O-AlkTMM-C7) which, in conjunction with click chemistry, acted as a chemical reporter for mycoloylation in intact cells and allowed metabolic labeling of mycoloylated components of the mycomembrane.

View Article and Find Full Text PDF

Mycoloyltransferases: A large and major family of enzymes shaping the cell envelope of Corynebacteriales.

Biochim Biophys Acta Gen Subj

January 2017

Molecular Biology of Corynebacteria and Mycobacteria, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France. Electronic address:

Mycobacterium and Corynebacterium are important genera of the Corynebacteriales order, the members of which are characterized by an atypical diderm cell envelope. Indeed the cytoplasmic membrane of these bacteria is surrounded by a thick mycolic acid-arabinogalactan-peptidoglycan (mAGP) covalent polymer. The mycolic acid-containing part of this complex associates with other lipids (mainly trehalose monomycolate (TMM) and trehalose dimycolate (TDM)) to form an outer membrane.

View Article and Find Full Text PDF

Identification of a mycoloyl transferase selectively involved in O-acylation of polypeptides in Corynebacteriales.

J Bacteriol

September 2013

Team Enveloppes Mycobactériennes, Structure Biosynthèse et Rôles, Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie et Biologie Structurale (IPBS), Département Mécanismes Moléculaires des Infections Mycobactériennes, UMR 5089, Toulouse, France.

We have previously described the posttranslational modification of pore-forming small proteins of Corynebacterium by mycolic acid, a very-long-chain α-alkyl and β-hydroxy fatty acid. Using a combination of chemical analyses and mass spectrometry, we identified the mycoloyl transferase (Myt) that catalyzes the transfer of the fatty acid residue to yield O-acylated polypeptides. Inactivation of corynomycoloyl transferase C (cg0413 [Corynebacterium glutamicum mytC {CgmytC}]), one of the six Cgmyt genes of C.

View Article and Find Full Text PDF

The antigen 85 (Ag85) protein family, consisting of Ag85A, -B, and -C, is vital for Mycobacterium tuberculosis due to its role in cell envelope biogenesis. The mycoloyl transferase activity of these proteins generates trehalose dimycolate (TDM), an envelope lipid essential for M. tuberculosis virulence, and cell wall arabinogalactan-linked mycolic acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!