The mechanisms underlying diabetic nephropathy are not fully understood. However, recent research indicates mitochondria dysfunction as a contributing factor. Mammalian target of rapamycin (mTOR) is a known regulator of mitochondria function and could therefore also be involved in the development of diabetic nephropathy. The present study investigates the role of mTOR for controlling the function of mitochondria isolated from normal and diabetic rat kidneys. Control and streptozotocin-induced diabetic rats were treated with the mTOR inhibitor rapamycin (0.2 mg/day) by oral gavage for 14 days, after which mitochondria function was investigated using high-resolution respirometry. Mitochondrial uncoupling was defined as increased oxygen usage unrelated to ATP production. mTOR inhibition induced mitochondria uncoupling in control rats, but did not affect the already occurring uncoupling in kidney mitochondria from diabetic animals. Inhibition of mTOR using rapamycin induces mitochondria uncoupling in control rats, suggesting a role of mTOR as a moderator of mitochondria efficiency. No effect of mTOR inhibition was observed in mitochondria from diabetic animals, suggesting that there are other pathways in addition to the mTOR pathway regulating mitochondria function in diabetes. The functional significance of the mTOR pathway in regulating mitochondria efficiency warrants further attention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4614-7411-1_41 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Experimental Immunology, Amsterdam UMC Location University of Amsterdam, Amsterdam, Netherlands.
Identifying cellular and molecular mechanisms maintaining HIV-1 latency in the viral reservoir is crucial for devising effective cure strategies. Here we developed an innovative flow cytometry-fluorescent in situ hybridization (flow-FISH) approach for direct ex vivo reservoir detection without the need for reactivation using a combination of probes detecting abortive and elongated HIV-1 transcripts. Our flow-FISH assay distinguished between HIV-1-infected CD4+ T cells expressing abortive or elongated HIV-1 transcripts in PBMC from untreated and ART-treated PWH from the Amsterdam Cohort Studies.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Opthalmology, Chongqing Hechuan District People's Hospital, Chongqing, China.
Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.
Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).
Cell Rep
January 2025
Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic; School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia; 1(st) Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic. Electronic address:
Recent research has shown that mtDNA-deficient cancer cells (ρ cells) acquire mitochondria from tumor stromal cells to restore respiration, facilitating tumor formation. We investigated the role of Miro1, an adaptor protein involved in movement of mitochondria along microtubules, in this phenomenon. Inducible Miro1 knockout (Miro1) mice markedly delayed tumor formation after grafting ρ cancer cells.
View Article and Find Full Text PDFChin J Integr Med
January 2025
Department of Ultrasound in Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
Objective: To evaluate the therapeutic effects of Kuanxiong Aerosol (KXA) on ischemic stroke with reperfusion and elucidate the underlying pharmacological mechanisms.
Methods: In vivo pharmacological effects on ischemic stroke with reperfusion was evaluated using the transient middle cerebral artery occlusion (t-MCAO) mice model. To evaluate short-term outcome, 30 mice were randomly divided into vehicle group (n=15) and KXA group (n=15).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!