Cr-doped core-shell iron/iron-oxide nanoparticles (NPs) containing 0, 2, 5, and 8 at.% of Cr dopant were synthesized via a nanocluster deposition system and their structural and magnetic properties were investigated. We observed the formation of a σ-FeCr phase in 2 at.% of Cr doping in core-shell NPs. This is unique since it was reported in the past that the σ-phase forms above 20 at.% of Cr. The large coercive field and exchange bias are ascribed to the antiferromagnetic Cr2O3 layer formed with the Fe-oxide shell, which also acts as a passivation layer to decrease the Fe-oxide shell thickness. The additional σ-phase in the core and/or Cr2O3 in the shell cause the hysteresis loop to appear tight waisted near the zero-field axis. The exchange interaction competes with the dipolar interaction with the increase of σ-FeCr grains in the Fe-core. The interaction reversal has been observed in 8 at.% of Cr. The observed reversal mechanism is confirmed from the Henkel plot and delta M value, and is supported by a theoretical watermelon model based on the core-shell nanostructure system.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr02247aDOI Listing

Publication Analysis

Top Keywords

interaction reversal
8
fe-oxide shell
8
watermelon-like iron
4
iron nanoparticles
4
nanoparticles doping
4
doping magnetism
4
magnetism magnetization
4
interaction
4
magnetization interaction
4
reversal cr-doped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!