AI Article Synopsis

Article Abstract

We have evaluated a photostimulable phosphor x-ray imaging system [Philips Computed Radiography (PCR) system] for use in quantification of x-ray exposure in diagnostic radiography. An exponential function was fitted to data yielding quantitative x-ray exposure values as a function of digital pixel values. We investigated several factors that affect the accuracy of exposure measurement using the PCR including repeatability, background noise as a function of time delay between plate erasure and use, sensitivity variation between different plates, nonuniformity of sensitivity within a plate, decay of the latent image between time of exposure and readout (observed as a change in sensitivity), and the accuracy with which the (exponential) calibration function yields exposure values as a function of digital pixel values. The calibration was performed over the exposure range from 5.1 X 10(-9) to 2.0 X 10(-5) C/kg (0.02-75 mR). The accuracy of exposure measurements made with a single imaging plate is between 1.6% and 4.2%. If measurements from several plates are involved, the uncertainty in the final measurement will be between 5% and 5.9%.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.596569DOI Listing

Publication Analysis

Top Keywords

photostimulable phosphor
8
x-ray exposure
8
exposure values
8
values function
8
function digital
8
digital pixel
8
pixel values
8
accuracy exposure
8
exposure
7
function
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!