GRIM-19 mutations fail to inhibit v-Src-induced oncogenesis.

Oncogene

Department of Microbiology & Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.

Published: June 2014

The non-receptor tyrosine kinase Src is a major player in multiple physiological responses including growth, survival and differentiation. Overexpression and/or oncogenic mutation in the Src gene have been documented in human tumors. The v-Src protein is an oncogenic mutant of Src, which promotes cell survival, migration, invasion and division. GRIM-19 is an antioncogene isolated using a genome-wide knockdown screen. Genes associated with Retinoid-IFN-induced Mortality (GRIM)-19 binds to transcription factor STAT3 and ablates its pro-oncogenic effects while v-Src activates STAT3 to promote its oncogenic effects. However, we found that GRIM-19 inhibits the pro-oncogenic effects of v-Src independently of STAT3. Here, we report the identification of functionally inactivating GRIM-19 mutations in a set of head and neck cancer patients. While wild-type GRIM-19 strongly ablated v-Src-induced cell migration, cytoskeletal remodeling and tumor metastasis, the tumor-derived mutants (L(71)P, L(91)P and A(95)T) did not. These mutants were also incapable of inhibiting the drug resistance of v-Src-transformed cells. v-Src downregulated the expression of Pag1, a lipid raft-associated inhibitor of Src, which was restored by wild-type GRIM-19. The tumor-derived mutant GRIM-19 proteins failed to upregulate Pag1. These studies show a novel mechanism that deregulates Src activity in cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3916943PMC
http://dx.doi.org/10.1038/onc.2013.271DOI Listing

Publication Analysis

Top Keywords

grim-19
8
grim-19 mutations
8
pro-oncogenic effects
8
effects v-src
8
wild-type grim-19
8
src
5
mutations fail
4
fail inhibit
4
inhibit v-src-induced
4
v-src-induced oncogenesis
4

Similar Publications

GRIM-19-mediated induction of mitochondrial STAT3 alleviates systemic sclerosis by inhibiting fibrosis and Th2/Th17 cells.

Exp Mol Med

December 2024

Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.

The gene associated with the retinoid-IFN-induced mortality-19 (GRIM-19) protein is a regulator of a cell death regulatory protein that inhibits STAT3, which is a critical transcription factor for interleukin (IL)-17-producing T (Th17) cells and a key integrator of extracellular matrix accumulation in systemic sclerosis (SSc). This protein is also a component of mitochondrial complex I, where it directly binds to STAT3 and recruits STAT3 to the mitochondria via the mitochondrial importer Tom20. In this study, the role of GRIM19 and its relationship with STAT3 in SSc development was investigated using a murine model of SSc.

View Article and Find Full Text PDF

Low Expression of GRIM-19 Correlates with Poor Prognosis in Patients with Upper Urinary Tract Urothelial Carcinoma.

Curr Cancer Drug Targets

June 2024

Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China.

Purpose: This study aimed to clarify the expression of a gene associated with Retinoid- Interferon-Induced Mortality-19 (GRIM-19) in Upper Urinary Tract Urothelial Carcinoma (UUTUC) and its prognostic significance for UUTUC patients.

Materials And Methods: Immunohistochemical (IHC) staining was used to determine the GRIM-19 expression in 70 paired samples. Progression-Free Survival (PFS) and Cancer-Specific Survival (CSS) were assessed using the Kaplan-Meier method.

View Article and Find Full Text PDF

The occurrence of unexplained recurrent spontaneous abortion (URSA) is closely related to immune system disorders, however, the underlying mechanisms remain unclear. The purpose of this study was to investigate the expression of GRIM-19 in URSA and the possible pathogenesis of URSA according to macrophage polarization. Here, we showed that GRIM-19 was downregulated in the uterine decidual macrophages of patients with URSA and that GRIM-19 downregulation was accompanied by increased M1 macrophage polarization.

View Article and Find Full Text PDF

Interleukin 24: Signal Transduction Pathways.

Cancers (Basel)

June 2023

Department of Biological Sciences, Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA.

Interleukin 24 is a member of the IL-10 family with crucial roles in antitumor, wound healing responses, host defense, immune regulation, and inflammation. Interleukin 24 is produced by both immune and nonimmune cells. Its canonical pathway relies on recognition and interaction with specific Interleukin 20 receptors in the plasma membrane and subsequent cytoplasmic Janus protein tyrosine kinases (JAK)/signal transducer and activator of the transcription (STAT) activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!